如果可以每个物品拿多件,则从小到大遍历,否则从大到小遍历。

G - Piggy-Bank

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. The main income for this action comes from Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some ACM member has any small money, he takes all the coins and throws them into a piggy-bank. You know that this process is irreversible, the coins cannot be removed without breaking the pig. After a sufficiently long time, there should be enough cash in the piggy-bank to pay everything that needs to be paid.

But there is a big problem with piggy-banks. It is not possible to determine how much money is inside. So we might break the pig into pieces only to find out that there is not enough money. Clearly, we want to avoid this unpleasant situation. The only possibility is to weigh the piggy-bank and try to guess how many coins are inside. Assume that we are able to determine the weight of the pig exactly and that we know the weights of all coins of a given currency. Then there is some minimum amount of money in the piggy-bank that we can guarantee. Your task is to find out this worst case and determine the minimum amount of cash inside the piggy-bank. We need your help. No more prematurely broken pigs!

 

Input

The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers E and F. They indicate the weight of an empty pig and of the pig filled with coins. Both weights are given in grams. No pig will weigh more than 10 kg, that means 1 <= E <= F <= 10000. On the second line of each test case, there is an integer number N (1 <= N <= 500) that gives the number of various coins used in the given currency. Following this are exactly N lines, each specifying one coin type. These lines contain two integers each, Pand W (1 <= P <= 50000, 1 <= W <=10000). P is the value of the coin in monetary units, W is it's weight in grams. 
 

Output

Print exactly one line of output for each test case. The line must contain the sentence "The minimum amount of money in the piggy-bank is X." where X is the minimum amount of money that can be achieved using coins with the given total weight. If the weight cannot be reached exactly, print a line "This is impossible.". 
 

Sample Input

3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4
 

Sample Output

The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.
#include<bits/stdc++.h>
using namespace std;
struct Node
{
int pan,wei;
}coin[];
int dp[];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int e,f;
scanf("%d%d",&e,&f);
int n;
scanf("%d",&n);
for(int i=;i<n;i++)
{
scanf("%d%d",&coin[i].pan,&coin[i].wei);
}
for(int i=;i<;i++)
dp[i]=;
//cout<<dp[1003];
dp[]=;
for(int i=;i<n;i++)
{
for(int j=coin[i].wei;j<=f-e;j++)
dp[j]=min(dp[j],dp[j-coin[i].wei]+coin[i].pan);
}
if(dp[f-e]<)
{
printf("The minimum amount of money in the piggy-bank is %d.\n",dp[f-e]);
}
else printf("This is impossible.\n");
}
}

装态转移方程:dp[j]=min(dp[j],dp[j-coni[i].wei]+coin[i].pan);dp[j]表示在重量为j的时候所能取得的最小的钱数。

poj 1114 完全背包 dp的更多相关文章

  1. POJ 1155 树形背包(DP) TELE

    题目链接:  POJ 1155 TELE 分析:  用dp[i][j]表示在结点i下最j个用户公司的收益, 做为背包处理.        dp[cnt][i+j] = max( dp[cnt][i+j ...

  2. POJ 1384 Piggy-Bank 背包DP

    所谓的全然背包,就是说物品没有限制数量的. 怎么起个这么intimidating(吓人)的名字? 事实上和一般01背包没多少差别,只是数量能够无穷大,那么就能够利用一个物品累加到总容量结尾就能够了. ...

  3. POJ 2486 树形背包DP Apple Tree

    设d(u, j, 0)表示在以u为根的子树中至多走k步并且最终返回u,能吃到的最多的苹果. 则有状态转移方程: #include <iostream> #include <cstdi ...

  4. POJ.3624 Charm Bracelet(DP 01背包)

    POJ.3624 Charm Bracelet(DP 01背包) 题意分析 裸01背包 代码总览 #include <iostream> #include <cstdio> # ...

  5. HDU 1114 Piggy-Bank 完全背包 dp

    http://acm.hdu.edu.cn/showproblem.php?pid=1114 完全背包的题目,要求输出最小价值.然后一定要把给出的背包重量全部用完. 就是问一个背包为k的大小,n件物品 ...

  6. poj 1417 True Liars(并查集+背包dp)

    题目链接:http://poj.org/problem?id=1417 题意:就是给出n个问题有p1个好人,p2个坏人,问x,y是否是同类人,坏人只会说谎话,好人只会说实话. 最后问能否得出全部的好人 ...

  7. poj 2184 01背包变形【背包dp】

    POJ 2184 Cow Exhibition Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14657   Accepte ...

  8. poj1417(带权并查集+背包DP+路径回溯)

    题目链接:http://poj.org/problem;jsessionid=8C1721AF1C7E94E125535692CDB6216C?id=1417 题意:有p1个天使,p2个恶魔,天使只说 ...

  9. 背包dp整理

    01背包 动态规划是一种高效的算法.在数学和计算机科学中,是一种将复杂问题的分成多个简单的小问题思想 ---- 分而治之.因此我们使用动态规划的时候,原问题必须是重叠的子问题.运用动态规划设计的算法比 ...

随机推荐

  1. Linux unzip解压文件到某个目录下面

    1,例如我想解压Metinfo5.2.zip  到某一个文件夹下,执行下面的命令就可以了 sudo unzip  MetInfo5.2.zip  -d  metinfo-bak

  2. [原创]DELPHI木马DIY之生成服务端

    文章作者:上帝的禁区信息来源:邪恶八进制信息安全团队(www.eviloctal.com)DELPHI木马DIY之生成服务端   我在这里就生成简单的服务端,为什么不先讲服务端的隐藏?因为我觉得生成服 ...

  3. OJ 1188 全排列---康托展开

    题目描述 求n的从小到大第m个全排列(n≤20). 输入 n和m 输出 输出第m个全排列,两个数之间有一空格. 样例输入 3 2 样例输出 1 3 2 #include<cstdio> # ...

  4. python 之验证码

    验证码原理在于后台自动创建一张带有随机内容的图片,然后将内容通过img标签输出到页面. 安装图像处理模块: pip3 install pillow

  5. thinkphp 前台html调用函数 格式化输出

    仅仅是输出变量并不能满足模板输出的需要,内置模板引擎支持对模板变量使用调节器和格式化功能,其实也就是提供函数支持,并支持多个函数同时使用.用于模板标签的函数可以是PHP内置函数或者是用户自定义函数,和 ...

  6. 基础知识《零》---Java程序运行机制及运行过程

    Java运行机制 Java虚拟机(Java Virtual Machine):Java虚拟机可以理解成一个以字节码为机器指令的CPU:对于不同的运行平台,有不同的虚拟机:Java虚拟机机制屏蔽了底层运 ...

  7. java类的封装 继承 多态

    1.猜数字小游戏 package cn.jiemoxiaodi_02; import java.util.Scanner; /** * 猜数字小游戏 * * @author huli * */ pub ...

  8. 【转】 Mybatis/Ibatis,数据库操作的返回值

    该问题,我百度了下,根本没发现什么有价值的文章:还是看源代码(详见最后附录)中的注释,最有效了!insert,返回值是:新插入行的主键(primary key):需要包含<selectKey&g ...

  9. iOS UIBezierPath知识介绍

    UIBezierPath是在画图,定制动画轨迹中都有应用. UIBezierPath有许多类方法,能够创建基本的曲线,比如利用一个rect创建一个椭圆path的方法:bezierPathWithOva ...

  10. iOS 中的Certificate,Provisioning Profile 等在code singing中用到的信息

    注册apple id 有1年多了,这些概念还是模模糊糊的,决定在这里总结一下. 请参阅官方文档 App Distribution Guide code singing的作用如下: Code signi ...