CountDownLatch:

允许N个线程等待其他线程完成执行。无法进行重复使用,只能用一次。

比如有2个任务A,它要等待其他4个任务执行完毕之后才能执行,此时就可以利用CountDownLatch来实现这种功能了。

public class Test {

     public static void main(String[] args) {    

         final CountDownLatch latch = new CountDownLatch(2);

         new Thread(){

             public void run() {

                 try {

                     System.out.println("子线程"+Thread.currentThread().getName()+"正在执行");

                    Thread.sleep(3000);

                    System.out.println("子线程"+Thread.currentThread().getName()+"执行完毕");

                    latch.countDown();

                } catch (InterruptedException e) {

                    e.printStackTrace();

                }

             };

         }.start();

         new Thread(){

             public void run() {

                 try {

                     System.out.println("子线程"+Thread.currentThread().getName()+"正在执行");

                     Thread.sleep(3000);

                     System.out.println("子线程"+Thread.currentThread().getName()+"执行完毕");

                     latch.countDown();

                } catch (InterruptedException e) {

                    e.printStackTrace();

                }

             };

         }.start();

         try {

             System.out.println("等待2个子线程执行完毕...");

            latch.await();

            System.out.println("2个子线程已经执行完毕");

            System.out.println("继续执行主线程");

        } catch (InterruptedException e) {

            e.printStackTrace();

        }

     } 

}
线程Thread-0正在执行
线程Thread-1正在执行
等待2个子线程执行完毕...
线程Thread-0执行完毕
线程Thread-1执行完毕
2个子线程已经执行完毕
继续执行主线程

CyclicBarrier

实现让N个线程等待至某个状态(达到初始化数量值)之后再全部同时执行,并且要全部线程都执行cyclicBarrier.await();后才执行线程后续逻辑。

在初次的4个线程越过barrier状态后,又可以用来进行新一轮的使用,可重复使用。

比如聚餐,一个人先到了就开始等待,又来一个。。直到全部人到期后,这时才能吃饭,全部吃完后由一个人去结账(runable),最后每个人去做自己的事情。

public class Test {

    public static void main(String[] args) {

        int N = 4;

        CyclicBarrier barrier  = new CyclicBarrier(N);

        for(int i=0;i<N;i++)

            new Writer(barrier).start();

    } 

    static class Writer extends Thread{

        private CyclicBarrier cyclicBarrier;

        public Writer(CyclicBarrier cyclicBarrier) {

            this.cyclicBarrier = cyclicBarrier;

        }

        @Override

        public void run() {

            System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据...");

            try {

                Thread.sleep(5000);      //以睡眠来模拟写入数据操作

                System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕");

                cyclicBarrier.await();

            } catch (InterruptedException e) {

                e.printStackTrace();

            }catch(BrokenBarrierException e){

                e.printStackTrace();

            }

            System.out.println("所有线程写入完毕,继续处理其他任务...");

        }

    }

}
线程Thread-0正在写入数据...
线程Thread-3正在写入数据...
线程Thread-2正在写入数据...
线程Thread-1正在写入数据...
线程Thread-2写入数据完毕,等待其他线程写入完毕
线程Thread-0写入数据完毕,等待其他线程写入完毕
线程Thread-3写入数据完毕,等待其他线程写入完毕
线程Thread-1写入数据完毕,等待其他线程写入完毕
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...

  从上面输出结果可以看出,每个写入线程执行完写数据操作之后,就在等待其他线程写入操作完毕。

  当所有线程线程写入操作完毕之后,所有线程就继续进行后续的操作了。

public class Test {

    public static void main(String[] args) {

        int N = 4;

        CyclicBarrier barrier  = new CyclicBarrier(N,new Runnable() {

            @Override

            public void run() {

                System.out.println("当前线程"+Thread.currentThread().getName());    

            }

        });

        for(int i=0;i<N;i++)

            new Writer(barrier).start();

    } 

    static class Writer extends Thread{

        private CyclicBarrier cyclicBarrier;

        public Writer(CyclicBarrier cyclicBarrier) {

            this.cyclicBarrier = cyclicBarrier;

        }

        @Override

        public void run() {

            System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据...");

            try {

                Thread.sleep(5000);      //以睡眠来模拟写入数据操作

                System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕");

                cyclicBarrier.await();

            } catch (InterruptedException e) {

                e.printStackTrace();

            }catch(BrokenBarrierException e){

                e.printStackTrace();

            }

            System.out.println("所有线程写入完毕,继续处理其他任务...");

        }

    }

}
线程Thread-0正在写入数据...
线程Thread-1正在写入数据...
线程Thread-2正在写入数据...
线程Thread-3正在写入数据...
线程Thread-0写入数据完毕,等待其他线程写入完毕
线程Thread-1写入数据完毕,等待其他线程写入完毕
线程Thread-2写入数据完毕,等待其他线程写入完毕
线程Thread-3写入数据完毕,等待其他线程写入完毕
当前线程Thread-3
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...

从结果可以看出,当四个线程都到达barrier状态后,会从四个线程中选择一个线程去执行Runnable。

Semaphore

可以控同时访问的线程个数,通过 acquire() 获取一个许可,如果没有就等待,而 release() 释放一个许可。

假若一个工厂有5台机器,但是有8个工人,一台机器同时只能被一个工人使用,只有使用完了,其他工人才能继续使用。那么我们就可以通过Semaphore来实现:

public class Test {

    public static void main(String[] args) {

        int N = 8;            //工人数

        Semaphore semaphore = new Semaphore(5); //机器数目

        for(int i=0;i<N;i++)

            new Worker(i,semaphore).start();

    } 

    static class Worker extends Thread{

        private int num;

        private Semaphore semaphore;

        public Worker(int num,Semaphore semaphore){

            this.num = num;

            this.semaphore = semaphore;

        }

        @Override

        public void run() {

            try {

                semaphore.acquire();

                System.out.println("工人"+this.num+"占用一个机器在生产...");

                Thread.sleep(2000);

                System.out.println("工人"+this.num+"释放出机器");

                semaphore.release();            

            } catch (InterruptedException e) {

                e.printStackTrace();

            }

        }

    }

}
工人0占用一个机器在生产...
工人1占用一个机器在生产...
工人2占用一个机器在生产...
工人4占用一个机器在生产...
工人5占用一个机器在生产...
工人0释放出机器
工人2释放出机器
工人3占用一个机器在生产...
工人7占用一个机器在生产...
工人4释放出机器
工人5释放出机器
工人1释放出机器
工人6占用一个机器在生产...
工人3释放出机器
工人7释放出机器
工人6释放出机器

下面对上面说的三个辅助类进行一个总结:

  1)CountDownLatch和CyclicBarrier都能够实现线程之间的等待,只不过它们侧重点不同:

    CountDownLatch一般用于某个线程A等待若干个其他线程执行完任务之后,它才执行;

    而CyclicBarrier一般用于一组线程互相等待至某个状态,然后这一组线程再同时执行;

    另外,CountDownLatch是不能够重用的,而CyclicBarrier是可以重用的。

  2)Semaphore其实和锁有点类似,它一般用于控制对某组资源的访问权限。

Exchanger

Exchanger可以在两个线程之间交换数据,只能是2个线程,他不支持更多的线程之间互换数据。

当线程A调用Exchange对象的exchange()方法后,他会陷入阻塞状态,直到线程B也调用了exchange()方法,然后以线程安全的方式交换数据,之后线程A和B继续运行。

public class ThreadLocalTest {  

    public static void main(String[] args) {
Exchanger<List<Integer>> exchanger = new Exchanger<>();
new Consumer(exchanger).start();
new Producer(exchanger).start();
} } class Producer extends Thread {
List<Integer> list = new ArrayList<>();
Exchanger<List<Integer>> exchanger = null;
public Producer(Exchanger<List<Integer>> exchanger) {
super();
this.exchanger = exchanger;
}
@Override
public void run() {
Random rand = new Random();
for(int i=0; i<10; i++) {
list.clear();
list.add(rand.nextInt(10000));
list.add(rand.nextInt(10000));
list.add(rand.nextInt(10000));
list.add(rand.nextInt(10000));
list.add(rand.nextInt(10000));
try {
list = exchanger.exchange(list);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
} class Consumer extends Thread {
List<Integer> list = new ArrayList<>();
Exchanger<List<Integer>> exchanger = null;
public Consumer(Exchanger<List<Integer>> exchanger) {
super();
this.exchanger = exchanger;
}
@Override
public void run() {
for(int i=0; i<10; i++) {
try {
list = exchanger.exchange(list);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
System.out.print(list.get(0)+", ");
System.out.print(list.get(1)+", ");
System.out.print(list.get(2)+", ");
System.out.print(list.get(3)+", ");
System.out.println(list.get(4)+", ");
}
}
}

8041, 3278, 7654, 2981, 7529,
7091, 4699, 3542, 9739, 3587,
1981, 3427, 7698, 8519, 4319,
2119, 8179, 4338, 7676, 2617,
2772, 6843, 9765, 8948, 418,
7433, 7846, 9442, 6114, 6475,
9142, 4858, 6511, 6401, 9709,
6466, 9250, 3018, 8256, 8771,
80, 8762, 7367, 8664, 9053,
8008, 5456, 2018, 9806, 8194,

 

CountDownLatch、CyclicBarrier、Semaphore、Exchanger的更多相关文章

  1. 多线程-CountDownLatch,CyclicBarrier,Semaphore,Exchanger,Phaser

    CountDownLatch 一个同步辅助类,在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待.用给定的计数初始化CountDownLatch.调用countDown()计数减一, ...

  2. Java并发编程:CountDownLatch、CyclicBarrier和Semaphore

    Java并发编程:CountDownLatch.CyclicBarrier和Semaphore 在java 1.5中,提供了一些非常有用的辅助类来帮助我们进行并发编程,比如CountDownLatch ...

  3. 【Java多线程】JUC包下的工具类CountDownLatch、CyclicBarrier和Semaphore

    前言 JUC中为了满足在并发编程中不同的需求,提供了几个工具类供我们使用,分别是CountDownLatch.CyclicBarrier和Semaphore,其原理都是使用了AQS来实现,下面分别进行 ...

  4. CountDownLatch、CyclicBarrier和Semaphore

    转载:http://www.cnblogs.com/dolphin0520/p/3920397.html 在java 1.5中,提供了一些非常有用的辅助类来帮助我们进行并发编程,比如CountDown ...

  5. Java并发之CountDownLatch、CyclicBarrier和Semaphore

    CountDownLatch 是能使一组线程等另一组线程都跑完了再继续跑:CyclicBarrier 能够使一组线程在一个时间点上达到同步,可以是一起开始执行全部任务或者一部分任务. CountDow ...

  6. Thread.join(), CountDownLatch、CyclicBarrier和 Semaphore区别,联系及应用

    在java 1.5中,提供了一些非常有用的辅助类来帮助我们进行并发编程,比如CountDownLatch,CyclicBarrier和Semaphore,今天我们就来学习一下这三个辅助类的用法, 由于 ...

  7. 并发编程(二)—— CountDownLatch、CyclicBarrier和Semaphore

    本文将讲解CountDownLatch,CyclicBarrier和Semaphore这三个并发包里面的辅助类. CountDownLatch 正如每个Java文档所描述的那样,CountDownLa ...

  8. CountDownLatch、CyclicBarrier和Semaphore 使用示例及原理

    备注:博客园的markDown格式支持的特别不友好.也欢迎查看我的csdn的此篇文章链接:CountDownLatch.CyclicBarrier和Semaphore 使用示例及原理 CountDow ...

  9. Java多线程:CountDownLatch、CyclicBarrier 和 Semaphore

    场景描述: 多线程设计过程中,经常会遇到需要等待其它线程结束以后再做其他事情的情况. 有几种方案:   1.在主线程中设置一自定义全局计数标志,在工作线程完成时,计数减1.主线程侦测该标志是否为0,一 ...

  10. Java并发编程:CountDownLatch、CyclicBarrier和 Semaphore

    原文出处: 海子 在java 1.5中,提供了一些非常有用的辅助类来帮助我们进行并发编程,比如CountDownLatch,CyclicBarrier和Semaphore,今天我们就来学习一下这三个辅 ...

随机推荐

  1. 聊下并发和Tomcat线程数(Updated)

    最近一直在解决线上一个问题,表现是: Tomcat每到凌晨会有一个高峰,峰值的并发达到了3000以上,最后的结果是Tomcat线程池满了,日志看很多请求超过了1s. 服务器性能很好,Tomcat版本是 ...

  2. Spring各个jar包的简介

    spring.jar是包含有完整发布的单个jar 包,spring.jar中包含除了spring-mock.jar里所包含的内容外其它所有jar包的内容,因为只有在开发环境下才会用到 spring-m ...

  3. 初学require.js

    引入require.js,可以解决的问题: (1)实现js文件的异步加载,避免网页失去响应: (2)管理模板之间的依赖性,便于代码的编写和维护. 它的模块管理遵循AMD规范(Asynchronous ...

  4. sql大全

    推荐一. 简单查询   简单的Transact-SQL查询只包括选择列表.FROM子句和Where子句.它们分别说明所查询列.查询的表或视图.以及搜索条件等. 例如,下面的语句查询testtable表 ...

  5. setVolumeControlStream(int streamType)

    Android中有如下几种音频流: AudioManager.STREAM_MUSIC  /** The audio stream for music playback */ AudioManager ...

  6. angular 强制刷新路由,重新加载路由

    angular js ui-route 在使用时默认不是不会刷新路由的,所有有些时候我们需要主动刷新路由. 主动刷新方法是: <a ui-sref="profitManage" ...

  7. poj2996 模拟

    Help Me with the Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3713   Accepted:  ...

  8. spring事物传播属性

    PROPAGATION_REQUIRED Support a current transaction; create a new one if none exists.  支持一个当前事务;如果不存在 ...

  9. css整个页面离顶部的距离

    body { padding:0; margin:0; font-size:12px; line-height:22px; } 说明: 整个页面离顶部的距离是22像素

  10. Windows命令行重命名文件

    RENAME D:\Cache\xyz.html xyz%date:~0,4%%date:~5,2%%date:~8,2%.tar.gz