[bzoj3994][SDOI2015]约数个数和-数论
Brief Description
计算\(\sum_{i\leqslant n}\sum_{j\leqslant m}\sigma_0(ij)\).
Algorithm Design
首先证明一个结论
\]
我们不显式地证明它, 仅仅直观地考虑每个质数对于答案的贡献就好.
有了这个结论我们开始推式子:
\sum_{i\leqslant n}\sum_{j\leqslant m}\sigma_0(ij) & = \sum_{i\leqslant n}\sum_{j\leqslant m} \sum_{a|i} \sum_{b|j} [(i,j)=1]\\ & =\sum_{i\leqslant n}\sum_{j\leqslant m}\sum_{a|i}\sum_{b|j}\sum_{x|(i,j)}\mu(x)\\& =\sum_{i\leqslant n}\sum_{j \leqslant m}\sum_{x|i+j}\mu(x)\sigma_0(\frac ix)\sigma_0(\frac jx) \\ &=\sum_{x \leqslant n} \mu(x)\sum_{i \leqslant \lfloor \frac nx \rfloor} \sigma_0(i)\sum_{j \leqslant \lfloor \frac mx \rfloor}\sigma_0(j)
\end{aligned}
\]
有了最后的式子, 我们就可以开始乱搞了.
复杂度\(O(n+T\sqrt n)\)
Code
#include <algorithm>
#include <cctype>
#include <cstdio>
#define ll long long
const int maxn = 50000 + 10;
int prime[maxn], tot;
int mu[maxn], sigma[maxn], summu[maxn];
ll sumsigma[maxn];
bool check[maxn];
int read() {
int x = 0, f = 1;
char ch = getchar();
while (!isdigit(ch)) {
if (ch == '-')
f = -1;
ch = getchar();
}
while (isdigit(ch)) {
x = x * 10 + ch - '0';
ch = getchar();
}
return x * f;
}
void shake() {
int minPrimeCnt[maxn];
mu[1] = 1, sigma[1] = 1;
for (int i = 2; i < maxn; i++) {
if (!check[i]) {
prime[tot++] = i;
mu[i] = -1;
sigma[i] = 2;
minPrimeCnt[i] = 1;
}
for (int j = 0; j < tot; j++) {
int x = i * prime[j];
if (x >= maxn)
break;
check[x] = 1;
if (i % prime[j] == 0) {
mu[x] = 0;
minPrimeCnt[x] = minPrimeCnt[i] + 1;
sigma[x] = sigma[i] / (minPrimeCnt[i] + 1) * (minPrimeCnt[x] + 1);
break;
} else {
mu[x] = -mu[i];
sigma[x] = sigma[i] << 1;
minPrimeCnt[x] = 1;
}
}
}
summu[0] = 0;
for (int i = 1; i < maxn; i++)
summu[i] = summu[i - 1] + mu[i];
for (int i = 1; i < maxn; i++)
sumsigma[i] = sumsigma[i - 1] + sigma[i];
}
ll F(int n, int m) {
if (n > m)
std::swap(n, m);
ll ans = 0;
for (int i = 1, last = 1; i <= n; i = last + 1) {
last = std::min(n / (n / i), m / (m / i));
ans += (summu[last] - summu[i - 1]) * sumsigma[n / i] * sumsigma[m / i];
}
return ans;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("input", "r", stdin);
#endif
shake();
int kase = read();
while (kase--) {
int n = read(), m = read();
printf("%lld\n", F(n, m));
}
return 0;
}
[bzoj3994][SDOI2015]约数个数和-数论的更多相关文章
- P3327/bzoj3994 [SDOI2015]约数个数和(莫比乌斯反演)
P3327 [SDOI2015]约数个数和 神犇题解(转) 无话可补 #include<iostream> #include<cstdio> #include<cstri ...
- BZOJ3994: [SDOI2015]约数个数和
Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. O ...
- bzoj千题计划203:bzoj3994: [SDOI2015]约数个数和
http://www.lydsy.com/JudgeOnline/problem.php?id=3994 设d(x)为x的约数个数,给定N.M,求 用到的一个结论: 证明: 枚举n的约数i,枚举m的约 ...
- BZOJ3994: [SDOI2015]约数个数和(莫比乌斯反演)
Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Out ...
- bzoj3994: [SDOI2015]约数个数和(反演+结论?!)
这题做的历程堪称惊心动魄 刚刚学了莫比乌斯反演的我高高兴兴的和cbx一起反演式子 期间有突破,有停滞,有否定 然后苟蒻的我背着cbx偷偷打开了题解 看到了 我...... 去你的有个性质啊(当然还是自 ...
- 【BZOJ3994】[SDOI2015]约数个数和 莫比乌斯反演
[BZOJ3994][SDOI2015]约数个数和 Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组 ...
- [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)
[BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...
- 【BZOJ3994】约数个数和(莫比乌斯反演)
[BZOJ3994]约数个数和(莫比乌斯反演) 题面 求\[\sum_{i=1}^n\sum_{j=1}^md(ij)\] 多组数据\((<=50000组)\) \(n,m<=50000\ ...
- BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演
BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演 Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表 ...
随机推荐
- springmvc常用jar包
<dependency> <groupId>org.springframework</groupId> <artifactId>spring-beans ...
- FJWC 2019 游记
FJWC 2019 游记 Day 0 春节旅游, 刚从杭州绍兴一带赶回来, 然而并没有直接飞去福州, 去了厦门再去福州, 浪费了好多时间. Day 1 酒店到学校有 \(20\) 分钟的步行路程, 感 ...
- bug单的提交
顶头信息 所属产品,所属项目,所属模块,影响版本,当前指派,bug类型:代码错误,界面优化,设计缺陷,性能问题,标准规范,其他,安全相关.bug标题,严重程度,优先级 缺陷描述 bug描述,预置条件, ...
- 孤荷凌寒自学python第六十七天初步了解Python爬虫初识requests模块
孤荷凌寒自学python第六十七天初步了解Python爬虫初识requests模块 (完整学习过程屏幕记录视频地址在文末) 从今天起开始正式学习Python的爬虫. 今天已经初步了解了两个主要的模块: ...
- 怎么用Q-Q图验证数据集的分布
样本数据集在构建机器学习模型的过程中具有重要的作用,样本数据集包括训练集.验证集.测试集,其中训练集和验证集的作用是对学习模型进行参数择优,测试集是测试该模型的泛化能力. 正负样本数据集符合独立同分布 ...
- php+Mysql中网页出现乱码的解决办法详解
$conn = mysql_connect("$host","$user","$password");mysql_query("S ...
- import方法引入模块详解
在python用import或者from...import或者from...import...as...来导入相应的模块,作用和使用方法与C语言的include头文件类似.其实就是引入某些成熟的函数库 ...
- C - 安装雷达
C - 安装雷达 Time Limit: 1000/1000MS (C++/Others) Memory Limit: 65536/65536KB (C++/Others) Problem Descr ...
- el-input怎么绑定回车事件
在 Vue 2.0 中,为自定义组件绑定原生事件必须使用 .native 修饰符:<el-input v-model="queryForm.skuName" placehol ...
- 算法(13)Contiguous Array
题目:找出数组的一个子数组,要求这个子数组中0和1的数量相等,找出最大长度的这样的数组! 思路:也是受网上算法的启发吧,用一个 语言:如何初始化一个unordered_map<int,int&g ...