POJ1061-青蛙的约会---扩展欧几里德算法求最小整数解
扩展欧几里得算法模板
#include <cstdio>
#include <cstring>
#define ll long long using namespace std; ll extend_gcd(ll a, ll b, ll &x, ll &y)
{
if(b == )
{
x = , y = ;
return a;
}
else
{
ll r = extend_gcd(b, a%b, y, x);
y -= x*(a/b);
return r;
}
}
1.对于形如a*x0 + b*y0 = n的不定方程为了求解x0和y0,可以通过扩展欧几里得先求出满足a*x + b*y = gcd(a, b)的x和y。
2.容易得到,若(x-y)%gcd(a,b)==0,则该不定方程有整数解,否则无符合条件的整数解。
3.得到x和y后,可以通过x0 = x*n / gcd(a, b)这个x0相当关键,求出x0.
4.在实际问题当中,我们需要的往往是最小整数解,我们可以通过下面的方法求出最小整数解:
令t = b/gcd(a, b),x是方程a*x + b*y = n的一个特解,则xmin = (x % t + t) % t
青蛙的约会
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 113227 | Accepted: 23091 |
Description
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input
Output
Sample Input
1 2 3 4 5
Sample Output
4 分析:
#include "cstdio"
#include "iostream"
using namespace std;
#define LL long long
LL extgcd(LL a,LL b,LL&x,LL&y)///模板
{
if(b==){
x=;y=;
return a;
}
LL ans=extgcd(b,a%b,y,x);
y-=a/b*x;
return ans;
} int main()
{
LL n,m,t,l,x,y,p;
while(~scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l))
{
LL ans=extgcd(n-m,l,t,p);
if((x-y)%ans){///1.
printf("Impossible\n");
}
else
{
///求最小整数解的算法
t=(x-y)/ans*t;///首先令x为一个特解 2.
LL temp=(l/ans);
t=(t%temp+temp)%temp;///再根据公式计算 3.
printf("%lld\n",t);
}
}
}
总结:对于此类题,
我们需要做的是,1.看懂公式熟记公式
2.吸收这份来自数学的伟大力量
POJ1061-青蛙的约会---扩展欧几里德算法求最小整数解的更多相关文章
- POJ1061青蛙的约会(扩展欧几里德算法)
青蛙的约会 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 102239 Accepted: 19781 Descript ...
- POJ-1061青蛙的约会,扩展欧几里德求逆元!
青蛙的约会 以前不止一次看过这个题,但都没有去补..好吧,现在慢慢来做. 友情提示 ...
- poj1061 青蛙的约会 扩展欧几里德的应用
这个题解得改一下,开始接触数论,这道题目一开始是看了别人的思路做的,后来我又继续以这种方法去做题,发现很困难,学长告诉我先看书,把各种词的定义看懂了,再好好学习,我做了几道朴素的欧几里德,尽管是小学生 ...
- POJ1061——青蛙的约会(扩展欧几里德)
青蛙的约会 Description两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件 ...
- 青蛙的约会 (ax+by=c求最小整数解)【拓展欧几里得】
青蛙的约会(点击跳转) 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住 ...
- poj1061青蛙的约会 (扩展欧几里德)
Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事 ...
- POJ - 1061 扩展欧几里德算法+求最小正整数解
//#pragma comment(linker, "/STACK:1024000000,1024000000") //#pragma GCC optimize(2) #inclu ...
- POJ1061 青蛙的约会 —— 扩展gcd
题目链接:https://vjudge.net/problem/POJ-1061 青蛙的约会 Time Limit: 1000MS Memory Limit: 10000K Total Submi ...
- 解题报告:poj1061 青蛙的约会 - 扩展欧几里得算法
青蛙的约会 writer:pprp Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 119716 Accepted: 25238 ...
随机推荐
- 初步学习pg_control文件之十五
接前文 初步学习pg_control文件之十四 再看如下这个: int MaxConnections; 应该说,它是一个参考值,在global.c中有如下定义 /* * Primary determ ...
- Lambda方式左连接有Linq方式左连接
网上查到的直接使用Join+DefaultIfEmpty的方式是错误的,实际生成SQL是两表先内联接,然后再LEFT JOIN.经过查证,参考资料,最终得到如下两种方式的左连接写法: public v ...
- Leetcode 简略题解 - 共567题
Leetcode 简略题解 - 共567题 写在开头:我作为一个老实人,一向非常反感骗赞.收智商税两种行为.前几天看到不止两三位用户说自己辛苦写了干货,结果收藏数是点赞数的三倍有余,感觉自己的 ...
- 【数据库】 SQL SERVER 2014 实用新特性
[数据库] SQL SERVER 2014 实用新特性 官方链接 一. 内存优化表 大幅提高数据库性能,不过目前没有窗口化设计只能写语句 二. 索引增强
- Anytime项目开发记录4
做事情列表,我在程序中命名为“正在做”. 这是一个Fragment,应用的主页面,由一个MainActivity加上DoingListFragment和PersonFragment组成.PersonF ...
- Android应用开发中的夜间模式实现(一)
前言 在应用开发中会经常遇到要求实现夜间模式或者主题切换具体例子如下,我会先讲解第一种方法. 夜间模式 知乎 网易新闻 沪江开心词场 Pocket 主题切换 腾讯QQ 新浪微博 我今天主要是详述第一种 ...
- JMeter接口响应数据出现乱码的三种解决方法
第一种方法: Content encoding设置为utf-8,若仍为乱码,请用方法2 图1 第二种方法: 修改bin文件夹下的jmeter.properties文件 搜索ISO,把“#sampler ...
- Uniy 组件式泛型单例模式
我们知道,在Unity中,所有对象脚本都必须继承MonoBehavior脚本,才能使用Unity内置的脚本功能; 通常我们可以用静态类来取代单例模式,但是静态类方法的缺点是,它们必须继承最底层的类-- ...
- LeetCode - 66. Plus One(0ms)
Given a non-empty array of digits representing a non-negative integer, plus one to the integer. The ...
- xampp开户,apache打开出现端口被占用提示
刚装上去的时候,可以打开xampp,但是重启的时候出现以后以下问题 13:49:02 [Apache] Error: Apache shutdown unexpectedly.13:49:0 ...