【luogu P1040 加分二叉树】 题解
题目链接:https://www.luogu.org/problemnew/show/P1040
今天考试考了一个区间DP...没错就是这个...
太蒟了真是连区间DP都不会...看了看题解也看不懂,于是请了某獴dalao给补充了一下。
在这里把自己的理解写下来,算是给一些像我一样不会区间DP的萌新们一点指引。
所谓区间dp,顾名思义就是在一段区间上的动态规划。
它既要满足dp问题的最优子结构和无后效性外,还应该符合在区间上操作的特点。我们是用小区间的最优推出大区间的最优。
通常我们是拿f[i][j]表示区间i—j。在这个题中,我们就用f[i][j]表示区间i—j的最大权值。
对于区间DP,我们通常是一层循环枚举区间的长度,一层循环枚举区间的左端点。然后进行我们需要的DP就行了。
具体对这个题的做法代码里有注释。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
int n, v[31], f[31][31], root[31][31], l, r;
void print(int l, int r)
{
if(l > r) return;
printf("%d ",root[l][r]);
print(l, root[l][r]-1);
print(root[l][r]+1,r);
}
int main()
{
//freopen("binary.in","r",stdin);
//freopen("binary.out","w",stdout);
scanf("%d",&n);
for(int i = 1; i <= n; i++)
{
scanf("%d",&v[i]);
f[i][i] = v[i];//当只有自己的时候,最大就是自己
root[i][i] = i;//root[i][j]表示在区间i—j中,以哪个点作为根得到的权值最大。
}
for(int k = 2; k <= n; k++)//枚举区间大小
for(int l = 1; l+k-1 <= n; l++)//枚举区间内的端点
{
r = l+k-1;
if(f[l][r] < v[l]+f[l+1][r])
{
f[l][r] = v[l]+f[l+1][r];
root[l][r] = l;
}//右子树为空,只有左子树 的情况
if(f[l][r] < v[r]+f[l][r-1])
{
f[l][r] = v[r]+f[l][r-1];
root[l][r] = r;
}//左子树为空,只有右子树 的情况
for(int i = l+1; i <= r-1; i++)
{
if(f[l][i-1]*f[i+1][r]+v[i] > f[l][r])
{
f[l][r] = f[l][i-1]*f[i+1][r]+v[i];
root[l][r] = i;
}
}//左右子树均不为空
}//整个是在枚举在一段区间内,分别以每个点做根的情况
printf("%d\n",f[1][n]);//很明显我们所求的是1—n区间
print(1,n);//输出路径不多讲了
return 0;
}
【luogu P1040 加分二叉树】 题解的更多相关文章
- luogu P1040 加分二叉树
题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,-,n),其中数字1,2,3,-,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都 ...
- 洛谷P1040 加分二叉树题解
dp即可 \(f[i][j]\)表示i到j的加分 相当于区间dp了 #include<cstdio> using namespace std; int v[50]; int f[55][5 ...
- CJOJ 1010【NOIP2003】加分二叉树 / Luogu 1040 加分二叉树(树型动态规划)
CJOJ 1010[NOIP2003]加分二叉树 / Luogu 1040 加分二叉树(树型动态规划) Description 设 一个 n 个节点的二叉树 tree 的中序遍历为( 1,2,3,-, ...
- 【洛谷】P1040 加分二叉树
[洛谷]P1040 加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数 ...
- 洛谷P1040 加分二叉树(区间dp)
P1040 加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di, ...
- P1040 加分二叉树
转自:(http://www.cnblogs.com/geek-007/p/7197439.html) 经典例题:加分二叉树(Luogu 1040) 设一个 n 个节点的二叉树 tree 的中序遍历为 ...
- [洛谷P1040] 加分二叉树
洛谷题目链接:加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,-,n),其中数字1,2,3,-,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di ...
- 洛谷P1040 加分二叉树(树形dp)
加分二叉树 时间限制: 1 Sec 内存限制: 125 MB提交: 11 解决: 7 题目描述 设一个n个节点的二叉树tree的中序遍历为(l,2,3,...,n),其中数字1,2,3,...,n ...
- 【算法•日更•第十期】树型动态规划&区间动态规划:加分二叉树题解
废话不多说,直接上题: 1580:加分二叉树 时间限制: 1000 ms 内存限制: 524288 KB提交数: 121 通过数: 91 [题目描述] 原题来自:NOIP 20 ...
随机推荐
- POJ 2570 Fiber Network
Description Several startup companies have decided to build a better Internet, called the "Fibe ...
- 数据挖掘:基于Spark+HanLP实现影视评论关键词抽取(1)
1. 背景 近日项目要求基于爬取的影视评论信息,抽取影视的关键字信息.考虑到影视评论数据量较大,因此采用Spark处理框架.关键词提取的处理主要包含分词+算法抽取两部分.目前分词工具包较为主流的,包括 ...
- Python 进阶
高阶函数 定义 函数接受的参数是一个函数 函数的返回值为一个函数 满足以上2点中其中一个就是高阶函数 函数嵌套 定义 函数中def定义一个函数 嵌套会存在闭包, 其他情况不会有闭包(闭包闭的是变量) ...
- [转].NET Core之Entity Framework Core 你如何创建 DbContext
本文转自:http://www.cnblogs.com/tdws/p/5874212.html 本文版权归博客园和作者吴双共同所有,欢迎转载,转载和爬虫请注明博客园蜗牛原文地址 http://www. ...
- mysql 查两个表相同的值
比如一个数据库 表A和表B 都有一个username字段, 现查出与表A中username值相同的表B的username和password数据 select B.username,B.password ...
- OpenLayers 3 给features 添加手势
map.on('pointermove',function(e){ var pixel = map.getEventPixel(e.originalEvent); var hit = map.hasF ...
- 写一个安全的Java单例
单例模式可能是我们平常工作中最常用的一种设计模式了.单例模式解决的问题也很常见,即如何创建一个唯一的对象.但想安全的创建它其实并不容易,还需要一些思考和对JVM的了解. 1.首先,课本上告诉我,单例这 ...
- C#学习笔记12
1.在使用反射时,反射可以绕过安全访问级别(private.protected)修饰的类或属性,来获取需要的信息. 2.泛型的反射:可以使用Type.ContainsGenericParameters ...
- 《ArcGIS Runtime SDK for Android开发笔记》——问题集:Error:Error: File path too long on Windows, keep below 240 characters
1.前言 在使用Android Studio开发环境时,经常会爆出以下错误,虽然具体细节内容各有不同,但是说明的都是同一个问题,在windows中使用过长的路径,超过240字符. Error:Erro ...
- Automapper 实现自动映射
出于安全考虑,在后台与前台进行数据传输时,往往不会直接传输实体模型,而是使用Dto(Data transfer object 数据传输对象),这样在后台往前台传递数据时可以省略不必要的信息,只保留必要 ...