influxDB聚合类函数
1)count()函数
返回一个(field)字段中的非空值的数量。
SELECT COUNT(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]
例子1
计算非空water_level数量
>SELECT COUNT(water_level) FROM h2o_feet
结果
name: h2o_feet
--------------
time count
1970-01-01T00:00:00Z 15258
说明 water_level这个字段在 h2o_feet表中共有15258条数据。
注意:聚合函数中如果没有指定时间的话,会默认以 epoch 0 (1970-01-01T00:00:00Z) 作为时间。
可以在where 中加入时间条件,如下:
例子2
计算非空值water_level每4天时间间隔里的数量
SELECT COUNT(water_level) FROM h2o_feet WHERE time >= '2015-08-18T00:00:00Z' AND time < '2015-09-18T17:00:00Z' GROUP BY time(4d)
结果
name: h2o_feet
--------------
time count
2015-08-17T00:00:00Z 1440
2015-08-21T00:00:00Z 1920
2015-08-25T00:00:00Z 1920
2015-08-29T00:00:00Z 1920
2015-09-02T00:00:00Z 1915
2015-09-06T00:00:00Z 1920
2015-09-10T00:00:00Z 1920
2015-09-14T00:00:00Z 1920
2015-09-18T00:00:00Z 335
这样结果中会包含时间结果。
COUNT() and controlling the values reported for intervals with no data(控制时间间隔内没有值的返回值)
其他的InfluxQL功能时函数间间隔内没有值返回null值,count()用0。添加 fill(<stuff>)到查询里,用 <stuff>. COUNT(),代替null值返回。用0来代替没有值的间隔数,加入fill(<stuff>)来代替0来输出count()数。c
Example:用 fill(none) to 去除0的间隔输出数量
COUNT()不用 fill(none):
> SELECT COUNT(water_level) FROM h2o_feet WHERE location = 'santa_monica' AND time >= '2015-09-18T21:41:00Z' AND time <= '2015-09-18T22:41:00Z' GROUP BY time(30m)
name: h2o_feet
--------------
time count
2015-09-18T21:30:00Z 1
2015-09-18T22:00:00Z 0
2015-09-18T22:30:00Z 0
COUNT() 用 fill(none):
> SELECT COUNT(water_level) FROM h2o_feet WHERE location = 'santa_monica' AND time >= '2015-09-18T21:41:00Z' AND time <= '2015-09-18T22:41:00Z' GROUP BY time(30m) fill(none)
name: h2o_feet
--------------
time count
2015-09-18T21:30:00Z 1
For a more general discussion of fill(), see Data Exploration.
2、DISTINCT()函数
返回一个字段(field)的唯一值。
语法:
SELECT DISTINCT(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]
例子1
在level description选择唯一的值
SELECT DISTINCT("level description") FROM h2o_feet
结果
name: h2o_feet
--------------
time distinct
1970-01-01T00:00:00Z between 6 and 9 feet
1970-01-01T00:00:00Z below 3 feet
1970-01-01T00:00:00Z between 3 and 6 feet
1970-01-01T00:00:00Z at or greater than 9 feet
这个例子显示level description这个字段共有四个值,然后将其显示了出来,时间为默认时间。
注:聚合函数返回的时代0(1970-01-01t00:00:00z)为时间戳,除非您指定一个下界的时间范围。然后返回下界作为时间戳。
例子2
选择唯一的值在leve description 以location 标签分组
SELECT DISTINCT("level description") FROM h2o_feet GROUP BY location
结果
name: h2o_feet例子3
tags: location=coyote_creek
time distinct
---- --------
1970-01-01T00:00:00Z between 6 and 9 feet
1970-01-01T00:00:00Z between 3 and 6 feet
1970-01-01T00:00:00Z below 3 feet
1970-01-01T00:00:00Z at or greater than 9 feet name: h2o_feet
tags: location=santa_monica
time distinct
---- --------
1970-01-01T00:00:00Z below 3 feet
1970-01-01T00:00:00Z between 3 and 6 feet
1970-01-01T00:00:00Z between 6 and 9 feet
聚合函数DISTINCT() 使用count(),以location分组获得level_description的唯一数量
SELECT COUNT(DISTINCT("level description")) FROM h2o_feet GROUP BY location
结果
name: h2o_feet
tags: location = coyote_creek
time count
---- -----
1970-01-01T00:00:00Z 4
name: h2o_feet
tags: location = santa_monica
time count
---- -----
1970-01-01T00:00:00Z 3
3)MEAN() 函数
返回一个字段(field)中的值的算术平均值(平均值)。字段类型必须是长整型或float64。
语法格式
SELECT MEAN(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]
例子1
计算water_level的平均值
SELECT MEAN(water_level) FROM h2o_feet
结果
name: h2o_feet
--------------
time mean
1970-01-01T00:00:00Z 4.286791371454075
解释:
说明water_level字段的平均值为4.286791371454075
时间为默认时间,当然,你也可以加入where条件。
注意:
聚合函数返回的时代0(1970-01-01t00:00:00z)为时间戳,除非您指定一个下界的时间范围。然后他们返回下界的时间戳。
在float64点同一套执行mean()可能会产生稍微不同的结果。
InfluxDB之前不适用的功能,结果在那些小差异排序分。
例子2、计算wate_level以4天为间隔的平均值
SELECT MEAN(water_level) FROM h2o_feet WHERE time >= '2015-08-18T00:00:00Z' AND time < '2015-09-18T17:00:00Z' GROUP BY time(4d)
结果
name: h2o_feet
--------------
time mean
2015-08-17T00:00:00Z 4.322029861111125
2015-08-21T00:00:00Z 4.251395512375667
2015-08-25T00:00:00Z 4.285036458333324
2015-08-29T00:00:00Z 4.469495801899061
2015-09-02T00:00:00Z 4.382785378590083
2015-09-06T00:00:00Z 4.28849666349042
2015-09-10T00:00:00Z 4.658127604166656
2015-09-14T00:00:00Z 4.763504687500006
2015-09-18T00:00:00Z 4.232829850746268
4、MEDIAN()函数
从单个字段(field)中的排序值返回中间值(中位数)。中值是在一组数值中居于中间的数值。字段值的类型必须是长整型或float64格式。
语法:
SELECT MEDIAN(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]
注:median()几乎相当于PERCENTILE(field_key, 50),如果参数集合中包含偶数个数字,函数 MEDIAN 将返回位于中间的两个数的平均值。
中值 中值是一组数中间位置的数;即一半数的值比中值大,另一半数的值比中值小。例如,2、3、3、5、7 和 10 的中值是 4
例子1
选择water_level的中间值
SELECT MEDIAN(water_level) from h2o_feet
结果
name: h2o_feet
--------------
time median
1970-01-01T00:00:00Z 4.124
解释:
说明表中 water_level字段的中位数是 4.124
注:聚合函数返回的时代0(1970-01-01t00:00:00z)为时间戳,除非您指定一个下界的时间范围。然后返回下界作为时间戳。
例子2
选择时间在2015年8月18日和8月18日30分,以location分组water_level的中间值
SELECT MEDIAN(water_level) FROM h2o_feet WHERE time >= '2015-08-18T00:00:00Z' AND time < '2015-08-18T00:36:00Z' GROUP BY location
结果
name: h2o_feet
tags: location = coyote_creek
time median
---- ------
2015-08-18T00:00:00Z 7.8245
name: h2o_feet
tags: location = santa_monica
time median
---- ------
2015-08-18T00:00:00Z 2.0575
5)SPREAD()函数
返回字段的最小值和最大值之间的差值。数据的类型必须是长整型或float64。
语法
SELECT SPREAD(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]
例子1
计算water_level的最小值 与最大值 之间差
SELECT SPREAD(water_level) FROM h2o_feet
结果
name: h2o_feet
--------------
time spread
1970-01-01T00:00:00Z 10.574
注意:
聚合函数返回的时代0(1970-01-01t00:00:00z)为时间戳,除非您指定一个下界的时间范围。然后他们回到下界的时间戳。
在float64点同一套执行spread()可能会产生稍微不同的结果。InfluxDB之前不适用的功能,结果在那些小差异排序分。
例子2
计算water_level的最小值 与最大值差,以30分钟间隔,指定location为santa_monica,和一个时间范围
SELECT SPREAD(water_level) FROM h2o_feet WHERE location = 'santa_monica' AND time >= '2015-09-18T17:00:00Z' AND time < '2015-09-18T20:30:00Z' GROUP BY time(30m)
结果
name: h2o_feet
--------------
time spread
2015-09-18T17:00:00Z 0.16699999999999982
2015-09-18T17:30:00Z 0.5469999999999997
2015-09-18T18:00:00Z 0.47499999999999964
2015-09-18T18:30:00Z 0.2560000000000002
2015-09-18T19:00:00Z 0.23899999999999988
2015-09-18T19:30:00Z 0.1609999999999996
2015-09-18T20:00:00Z 0.16800000000000015
6)SUM()函数
返回一个字段中的所有值的和。字段的类型必须是长整型或float64。
语法:
SELECT SUM(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]
例子1
计算water_level的所有值的和
SELECT SUM(water_level) FROM h2o_feet
结果
name: h2o_feet
--------------
time sum
1970-01-01T00:00:00Z 67777.66900000002
注意:
聚合函数返回的时代0(1970-01-01t00:00:00z)为时间戳,除非您指定一个下界的时间范围。然后他们回到下界的时间戳。
在float64点同一套执行sum()可能会产生稍微不同的结果。InfluxDB之前不适用的功能,结果在那些小差异排序分。
例子2
计算以5天为分组,water_level的和
SELECT SUM(water_level) FROM h2o_feet WHERE time >= '2015-08-18T00:00:00Z' AND time < '2015-09-18T17:00:00Z' GROUP BY time(5d)
结果:
--------------
time sum
2015-08-18T00:00:00Z 10334.908999999983
2015-08-23T00:00:00Z 10113.356999999995
2015-08-28T00:00:00Z 10663.683000000006
2015-09-02T00:00:00Z 10451.321
2015-09-07T00:00:00Z 10871.817999999994
2015-09-12T00:00:00Z 11459.00099999999
2015-09-17T00:00:00Z 3627.762000000003
nearly equivalent
7)INTEGRAL()函数
返回曲线
语法:
SELECT INTEGRAL( [ * | <field_key> | /<regular_expression>/ ] [ , <unit> ] ) [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
8) STDDEV
influxDB聚合类函数的更多相关文章
- influxDB 变换类函数
1.DERIVATIVE()函数 作用:返回一个字段在一个series中的变化率. InfluxDB会计算按照时间进行排序的字段值之间的差异,并将这些结果转化为单位变化率.其中,单位可以指定,默认为1 ...
- InfluxDB 聚合函数实用案例
InfluxDB 聚合函数实用案例 文章大纲 InfluxDB 简介 InfluxDB是GO语言编写的分布式时间序列化数据库,非常适合对数据(跟随时间变化而变化的数据)的跟踪.监控和分析.在我们的项目 ...
- influxDB选择类函数
1)TOP()函数 作用:返回一个字段中最大的N个值,字段类型必须是长整型或float64类型. 语法: SELECT TOP(<field_key>[,<tag_keys>] ...
- InfluxDB学习系列教程,InfluxDB入门必备教程
nfluxDB是一个当下比较流行的时序数据库,InfluxDB使用 Go 语言编写,无需外部依赖,安装配置非常方便,适合构建大型分布式系统的监控系统. 本文是一系列InfluxDB学习教程的目录,现主 ...
- InfluxDB学习之InfluxDB的安装和简介
最近用到了 InfluxDB,在此记录下学习过程,同时也希望能够帮助到其他学习的同学. 本文主要介绍InfluxDB的功能特点以及influxDB的安装过程.更多InfluxDB详细教程请看:Infl ...
- Influxdb原理详解
本文属于<InfluxDB系列教程>文章系列,该系列共包括以下 15 部分: InfluxDB学习之InfluxDB的安装和简介 InfluxDB学习之InfluxDB的基本概念 Infl ...
- InfluxDB学习之InfluxDB的基本操作| Linux大学
来源地址:https://www.linuxdaxue.com/influxdb-study-series-manual.html 本文属于<InfluxDB系列教程>文章系列,该系列共包 ...
- InfluxDB执行语句管理(query management)
本文属于<InfluxDB系列教程>文章系列,该系列共包括以下 17 部分: InfluxDB学习之InfluxDB的基本概念 InfluxDB学习之InfluxDB的基本操作 Influ ...
- InfluxDB数据备份和恢复方法,支持本地和远程备份
本文属于<InfluxDB系列教程>文章系列,该系列共包括以下 17 部分: InfluxDB学习之InfluxDB的基本概念 InfluxDB学习之InfluxDB的基本操作 Influ ...
随机推荐
- 再次学习mysql优化
再次学习mysql优化 表的设计规范化(三范式) 添加索引(普通索引.主键索引.唯一索引.全文索引) 分表(水平分割.垂直分割) 读写分离(写add.update.delete) 存储过程 对mysq ...
- ajax乱码解决总结
第一,javascript沿用java的字符处理方式,内部是使用unicode来处理所有字符的,第二,utf-8是每个汉字(unicode字符)用3个字节来存储.第三,用utf-8来send数据是不会 ...
- leetcode第一刷_Sudoku Solver
这道题简直是耻辱啊.竟然被吓得不敢做,最终開始写还犯下了各种低级错误,花了好久的时间. 事实上假设想明确81*9事实上是非常小的规模的话,早就想到用回溯法了,这不是跟八皇后全然一样的嘛.每次填入的时候 ...
- 提高PAAS安全性的一点尝试
云服务已经成为现代人生活的一部分.手机中的照片会自己主动同步到云中:你的邮件内容保存在云中.办公软件执行在云中:你的健康数据会实时上传到云中.你每天的生活轨迹消耗的卡路里也会上传到云中:云服务也会逐渐 ...
- MATLAB 的日期和时间
MATLAB的日期和时间常用函数 函数 说明 calender 返回日历 clock 当前时间 date 当前日期 weekday 星期几 now 当前的日期和时间 datevec 以向量显示日期 d ...
- MATLAB 的通用命令
MATLAB 的通用命令 1.MATLAB 的标点符号及其特殊功能. 2.MATLAB 的键盘按键及其特殊功能. ↑或者Ctrl+p:调用上一次的命令 ↓或者Ctrl+n:调用下一行的命令 ←或者Ct ...
- smali语句类的静态成员查看,invoke-virtual、invoke-direct、invoke-super解释
smali举例: .class public Lcom/dataviz/dxtg/common/android/DocsToGoApp; .super Landroid/app/Application ...
- cnetos 6.7彻底解决vmware NAT网络问题
cnetos 6.7彻底解决vmware NAT网络问题 vmnet8在nat时使用 vmnet1 在桥接时使用 *解决Windows不能ping通linux的问题 vmnet8相当于一个网卡,虚 ...
- LeetCode543. Diameter of Binary Tree
Description Given a binary tree, you need to compute the length of the diameter of the tree. The dia ...
- Editing a Book UVA - 11212 IDA*
You have n equal-length paragraphs numbered 1 to n . Now you want to arrange them in the order of 1 ...