GCD

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 9765    Accepted Submission(s): 3652

Problem Description
Given
5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that
GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y.
Since the number of choices may be very large, you're only required to
output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.

 
Input
The
input consists of several test cases. The first line of the input is
the number of the cases. There are no more than 3,000 cases.
Each
case contains five integers: a, b, c, d, k, 0 < a <= b <=
100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as
described above.
 
Output
For each test case, print the number of choices. Use the format in the example.
 
Sample Input
2
1 3 1 5 1
1 11014 1 14409 9
 
Sample Output
Case 1: 9
Case 2: 736427

Hint

For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).

 
Source
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define esp 0.00000000001
#define pi 4*atan(1)
const int N=1e5+,M=1e7+,inf=1e9+,mod=1e9+;
int mu[N], p[N], np[N], cnt, sum[N];
void init() {
mu[]=;
for(int i=; i<N; ++i) {
if(!np[i]) p[++cnt]=i, mu[i]=-;
for(int j=; j<=cnt && i*p[j]<N; ++j) {
int t=i*p[j];
np[t]=;
if(i%p[j]==) { mu[t]=; break; }
mu[t]=-mu[i];
}
}
}
int main()
{
int T,cas=;
init();
scanf("%d",&T);
while(T--)
{
int a,b,c,d,k;
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
if(k==)
{
printf("Case %d: 0\n",cas++);
continue;
}
b/=k,d/=k;
if(b>=d)swap(b,d);
ll ans=;
for(int i=;i<=b;i++)
{
ans+=(ll)mu[i]*(b/i)*(d/i);
}
ll ans2=;
for(int i=;i<=b;i++)
{
ans2+=(ll)mu[i]*(b/i)*(b/i);
}
printf("Case %d: %lld\n",cas++,ans-ans2/);
}
return ;
}

hdu 1695 GCD 莫比乌斯的更多相关文章

  1. hdu 1695 GCD 莫比乌斯反演入门

    GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...

  2. HDU 1695 GCD 莫比乌斯反演

    分析:简单的莫比乌斯反演 f[i]为k=i时的答案数 然后就很简单了 #include<iostream> #include<algorithm> #include<se ...

  3. D - GCD HDU - 1695 -模板-莫比乌斯容斥

    D - GCD HDU - 1695 思路: 都 除以 k 后转化为  1-b/k    1-d/k中找互质的对数,但是需要去重一下  (x,y)  (y,x) 这种情况. 这种情况出现 x  ,y ...

  4. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. HDU 1695 GCD (莫比乌斯反演)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  6. HDU 1695 GCD (莫比乌斯反演模板)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  7. hdu 1695 GCD 【莫比乌斯函数】

    题目大意:给你 a , b , c , d , k 五个值 (题目说明了 你可以认为 a=c=1)  x 属于 [1,b] ,y属于[1,d]  让你求有多少对这样的 (x,y)满足gcd(x,y)= ...

  8. hdu 1695: GCD 【莫比乌斯反演】

    题目链接 这题求[1,n],[1,m]gcd为k的对数.而且没有顺序. 设F(n)为公约数为n的组数个数 f(n)为最大公约数为n的组数个数 然后在纸上手动验一下F(n)和f(n)的关系,直接套公式就 ...

  9. hdu 1695 GCD(莫比乌斯反演)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

随机推荐

  1. JS实现当鼠标移动到图片上时,时图片旋转

    <div id="container" style="width:500px;height:400px;position:relative;margin:0 aut ...

  2. Log4j将不同Package的日志输出到不同的文件

    转自:http://www.crazyant.net/1931.html 随着项目规模的越来越大,会不断的引入新的模块,不同的模块都会打印自己的日志,最后就造成日志根本没法查看,比如我自己的项目中,就 ...

  3. sparse matrix

    w https://en.wikipedia.org/wiki/Sparse_matrix 稀疏矩阵存储格式总结+存储效率对比:COO,CSR,DIA,ELL,HYB - Bin的专栏 - 博客园ht ...

  4. C# 自定义控件摘记

    C# 自定义控件属性 现有自定义控件,内有一textbox控件 TextBox1.控件有一属性 Value 定义为 [BrowsableAttribute(true)] [BindableAttrib ...

  5. js四则运算符

    只有当加法运算时,其中一方是字符串类型,就会把另一个也转为字符串类型.其他运算只要其中一方是数字,那么另一方就转为数字.并且加法运算会触发三种类型转换:将值转换为原始值,转换为数字,转换为字符串. & ...

  6. (4.5)DBCC的概念与用法(DBCC TRACEON、DBCC IND、DBCC PAGE)

    转自:http://www.cnblogs.com/huangxincheng/p/4249248.html DBCC的概念与用法 一:DBCC 1:什么是DBCC 我不是教学老师,我也说不到没有任何 ...

  7. 003-诠释 Java 工程师【一】

    一.基础篇 1.面向对象的三大特性 继承.封装.多态 什么是继承? ①继承是面向对象程序设计能够提高软件开发效率的重要原因之一. ②继承是具有传递性的,就像现实中孙子不仅长得像爸爸而且还像他爷爷. ③ ...

  8. mysql数据库补充知识1 安装数据库破解数据库密码已经创建用户

    一.安装MYSQL数据库 1.yum安装 #二进制rpm包安装 yum -y install mysql-server mysql 2.源码安装   1.解压tar包 cd /software tar ...

  9. 剑指offer 面试10题

    面试10题: 题目:大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.n<=39 n=0时,f(n)=0 n=1时,f(n)=1 n>1时,f(n)=f(n-1 ...

  10. Django设置上传文件夹

    django提供了两种字段类型models.FileField与models.ImageField,用于保存上传文件与图象.这两类字段提供了一个参数'upload_to',用于定义上传文件保存的路径( ...