hdu_1788_Chinese remainder theorem again (lcm
假设m1,m2,…,mk两两互素,则下面同余方程组:
x≡a1(mod m1)
x≡a2(mod m2)
…
x≡ak(mod mk)
在0<=<m1m2…mk内有唯一解。
记Mi=M/mi(1<=i<=k),因为(Mi,mi)=1,故有二个整数pi,qi满足Mipi+miqi=1,如果记ei=Mi/pi,那么会有:
ei≡0(mod mj),j!=i
ei≡1(mod mj),j=i
很显然,e1a1+e2a2+…+ekak就是方程组的一个解,这个解加减M的整数倍后就可以得到最小非负整数解。
这就是中国剩余定理及其求解过程。
现在有一个问题是这样的:
一个正整数N除以M1余(M1 - a),除以M2余(M2-a), 除以M3余(M3-a),总之, 除以MI余(MI-a),其中(a<Mi<100 i=1,2,…I),求满足条件的最小的数。
Input输入数据包含多组测试实例,每个实例的第一行是两个整数I(1<I<10)和a,其中,I表示M的个数,a的含义如上所述,紧接着的一行是I个整数M1,M1...MI,I=0 并且a=0结束输入,不处理。
Output对于每个测试实例,请在一行内输出满足条件的最小的数。每个实例的输出占一行。
Sample Input
2 1
2 3
0 0
Sample Output
5
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#define N 1000010
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b)
{
return b==0?a:gcd(b,a%b);
}
ll lcm(ll a,ll b)
{
return a/gcd(a,b)*b;
}
int main()
{
ll n,y,m;
while(~scanf("%lld%lld",&n,&y),n&&y)
{
ll ans=1;
for(int i=0;i<n;i++)
{
scanf("%lld",&m);
ans=lcm(m,ans);
}
cout<<ans-y<<endl;
} }
hdu_1788_Chinese remainder theorem again (lcm的更多相关文章
- hdu 1788 Chinese remainder theorem again(最小公倍数)
Problem Description 我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的: 假设m1,m2,-,mk两两互素,则下面同余方程组: x≡a1(mod m1) x≡a2( ...
- Chinese remainder theorem again(中国剩余定理)
C - Chinese remainder theorem again Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:% ...
- DHU 1788 Chinese remainder theorem again 中国剩余定理
Chinese remainder theorem again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 ...
- (多项式)因式分解定理(Factor theorem)与多项式剩余定理(Polynomial remainder theorem)(多项式长除法)
(多项式的)因式分解定理(factor theorem)是多项式剩余定理的特殊情况,也就是余项为 0 的情形. 0. 多项式长除法(Polynomial long division) Polynomi ...
- 【数论】【中国剩余定理】【LCM】hdu1788 Chinese remainder theorem again
根据题目容易得到N%Mi=Mi-a. 那么可得N%Mi+a=Mi. 两侧同时对Mi取余,可得(N+a)%Mi=0. 将N+a看成一个变量,就可以把原问题转化成求Mi的LCM,最后减去a即可. #inc ...
- HDU 1788 Chinese remainder theorem again 中国剩余定理
题意: 给定n,AA 以下n个数m1,m2···mn 则有n条方程 res % m1 = m1-AA res % m2 = m2-AA 问res的最小值 直接上剩余定理,嘿嘿 #include< ...
- 中国剩余定理(Chinese Remainder Theorem)
我理解的中国剩余定理的含义是:给定一个数除以一系列互素的数${p_1}, \cdots ,{p_n}$的余数,那么这个数除以这组素数之积($N = {p_1} \times \cdots \tim ...
- HDU 1788 Chinese remainder theorem again
题目链接 题意 : 中文题不详述. 思路 : 由N%Mi=(Mi-a)可得(N+a)%Mi=0;要取最小的N即找Mi的最小公倍数即可. #include <cstdio> #include ...
- HDU——1788 Chinese remainder theorem again
再来一发水体,是为了照应上一发水题. 再次也特别说明一下,白书上的中国剩余定理的模板不靠谱. 老子刚刚用柏树上的模板交上去,简直wa出翔啊. 下面隆重推荐安叔版同余方程组的求解方法. 反正这个版本十分 ...
随机推荐
- PAT 1055 The World's Richest
#include <cstdio> #include <cstdlib> #include <cstring> #include <vector> #i ...
- iframe中插入代码并执行
最近有需求通过iframe插入代码.有蛮多方法,如下: 1 var iframe = document.getElementById('previewUrl'); 2 iframe.src = 'ab ...
- 重复启动某一款应用,并传递intent参数
Intent intent = getPackageManager().getLaunchIntentForPackage(packageName); intent.setFlags(Intent.F ...
- 微软技术大会直播倒计时7天 | 地球上的IT咖们,正在慢慢向北京聚集
去年,一句歌词火了:“我在北方的寒夜里,四季如春.”足以见得,北京的冬天,是可以把人冻蒙圈儿的. 然而有一群人,却正在慢慢靠近这样寒冷的北京,7 天后,他们将齐聚在北京. 他们来这里干什么?又是来见谁 ...
- 多线程 更新 winform 控件的值,以避免UI线程的卡顿
委托 private delegate void UpdateDGV_AddRes_CallBack(Int32 i,bool Res); 函数实现 private void UpdateDGV_De ...
- Linux --Apache服务搭建
Apache网站服务 1.基本配置 安装 [root@localhost /]# rpm -e httpd --nodeps --卸载rpm方式安装的httpd [root@localhost qwe ...
- 数组:获取数组中最后一个数据end()函数
今天来学习一下end()函数 1.案例:直接获取数组中最后一个数据 代码部分 结果: 2.案例:从url中获取最后一个数据 代码部分: 结果: 总结: 1.有时候我们需要去获取数据库中,id最大的那个 ...
- Android——Intent,Bundle
Intent——切换activity intent.setClass(first.this,second.class); startActivity(intent); Bundle——切换时数据传递 ...
- POJ 1681 Painter's Problem 【高斯消元 二进制枚举】
任意门:http://poj.org/problem?id=1681 Painter's Problem Time Limit: 1000MS Memory Limit: 10000K Total ...
- 九、IntelliJ IDEA 编译方式介绍及编译器的设置和选择
相对于 Eclipse 的实时自动编译,IntelliJ IDEA 的编译更加手动化,虽然 IntelliJ IDEA 也可以通过设置开启实时编译,但是太浪费资源了,因此不建议这样做.IntelliJ ...