T=K*log2(N) 注:2是小2
时间T与以2为底的对数成正比。实际上,由于所有的对数都和其他对数成比例(从底数为2转换到底数为10需乘以3.322),我们可以将这个为常数的底数也并入K.由此不必指定底数:
T = K*log(N)
(知道这个公式吗:loga(b)=logc(b)/logc(a),loga(b)表示以a为底,这样logc(a)是常数,用什么为底就无所谓了)
这是《数据结构》第一章里的一段话,底数到底应该是几呢?

======================================================================
既然这里都说了不必指定底数,意思就是说任一指定一个底数的话,效果都是一样的,就不必去计较这个了。
如果看到那个地方说某个算法复杂度是O(logN)的话,那可能直接根据那个算法计算出来的基本操作次数是log2(N),也可能是log3(N)甚至还可能是2*log2(N*3)等等,反正这个时候你知道底数也没有什么用,因为你不知道常数项。只不过,计算机中的很多算法如果是O(logN)的复杂度的话,其基本操作的次数都是C1*log2(C2*N),但是这并不是说见到logN就一定是log2N

O(logn)的意思的更多相关文章

  1. hdu.5211.Mutiple(数学推导 && 在logn的时间内求一个数的所有因子)

    Mutiple  Accepts: 476  Submissions: 1025  Time Limit: 4000/2000 MS (Java/Others)  Memory Limit: 6553 ...

  2. UVALive 7281 Saint John Festival (凸包+O(logn)判断点在凸多边形内)

    Saint John Festival 题目链接: http://acm.hust.edu.cn/vjudge/contest/127406#problem/J Description Porto's ...

  3. 程序员面试题精选100题(16)-O(logn)求Fibonacci数列[算法]

    作者:何海涛 出处:http://zhedahht.blog.163.com/ 题目:定义Fibonacci数列如下: /  0                      n=0 f(n)=      ...

  4. [BZOJ 1218] [HNOI2003] 激光炸弹 【n logn 做法 - 扫描线 + 线段树】

    题目链接:BZOJ - 1218 题目分析 可以覆盖一个边长为 R 的正方形,但是不能包括边界,所以等价于一个边长为 R - 1 的正方形. 坐标范围 <= 5000 ,直接 n^2 的二维前缀 ...

  5. Fibonacci 数列第 N项 O(logN)算法

    时间复杂度为O( log n )的方法: 该算法使用矩阵乘法操作,使得算法时间复杂度为 O(logN) long long Fibonacci( unsigned n ) { ] = {, }; ) ...

  6. Fibonacci 数列O(logn)解法

    传统解法 提到斐波那契数列(Fibonacci Sequence),首先想到的是经典的动规(DP)算法. 时间复杂度O(n),这里空间复杂度可以优化到O(1).代码如下: int fib_n(int ...

  7. 关于[LeetCode]Factorial Trailing Zeroes O(logn)解法的理解

    题目描述: Given an integer n, return the number of trailing zeroes in n!. 题目大意: 给定一个整数n,返回n!(n的阶乘)结果中后缀0 ...

  8. 关于O(logN)的正确理解

    学计算机的或许对O(logN)这个符号并不陌生,快排.堆排.归并等等排序的平均时间复杂度. 问题来了,之前一直有个歧义就是:logN的底数到底是多少? 这个问题搁置着并没有去深究,仅仅是想应该是2吧. ...

  9. 洛谷 [P1020] 导弹拦截 (N*logN)

    首先此一眼就能看出来是一个非常基础的最长不下降子序列(LIS),其朴素的 N^2做法很简单,但如何将其优化成为N*logN? 我们不妨换一个思路,维护一个f数组,f[x]表示长度为x的LIS的最大的最 ...

  10. 证明二叉查找树所有节点的平均深度为O(logN)

    数据结构与算法分析(c语言描述)第4章 P78 概念一:一棵树所有节点的深度和称为内部路径长 令D(N)为一棵有N节点的树的内部路径长么,即有D(1)=0, 设一棵树的左子树的内部路径长为D(i),则 ...

随机推荐

  1. 剑指offer面试54题

    面试54题: 题目:二叉搜索树的第K大节点 题:给定一颗二叉搜索树,请找出其中的第k小的结点.例如, 5 / \ 3 7 /\ /\ 2 4 6 8 中,按结点数值大小顺序第三个结点的值为4. 解题思 ...

  2. sharepoint 2010自定义访问日志列表设置移动终端否和客户端访问系统等计算列的公式

    上个月本人开发和上线了一个在SharePoint 2010上基于HTML5的移动OA网站,后端服务采用自定义的基于AgilePoint工作流引擎的Sharepoint Web服务,前端主要采用Jque ...

  3. 建议10:numpy使用基础

    # -*- coding: utf-8 -*- import numpy as np #---------------------------------------- #-- 定义 ndarray ...

  4. JSP笔记02——概述(转)

    不完全翻译,结合谷歌,一定主观性,还可能有误,原始内容地址:https://www.tutorialspoint.com/jsp/jsp_overview.htm 主要内容如下: 什么是JSP? 为什 ...

  5. Python编程-绑定方法、软件开发

    一.绑定方法与非绑定方法 1.绑定方法 绑定给谁,谁来调用就自动将它本身当作第一个参数传入 (1)绑定到类的方法:用classmethod装饰器装饰的方法. 为类量身定制 类.boud_method( ...

  6. CSS3手风琴下拉菜单

    在线演示 本地下载

  7. linux 无密码登录

    环境:Linux 脚本:Python 功能:批量IP,远程执行命令.拷贝文件 运行:./ssh_scp.py iplist.txt 脚本内容: #!/usr/bin/env python# -*- c ...

  8. Pandas基础用法-数据处理【全】-转

    完整资料:[数据挖掘入门介绍] (https://github.com/YouChouNoBB/data-mining-introduction) # coding=utf-8 # @author: ...

  9. Maximum Subsequence Sum【最大连续子序列+树状数组解决】

    Problem Description 给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i < ...

  10. Struts2 hibernate spring 概念总结

    Hibernate工作原理及为什么要用? 原理:1.通过Configuration().configure();读取并解析hibernate.cfg.xml配置文件2.由hibernate.cfg.x ...