多校训练8,有官方题解

主要之前没写过ntt,感觉不是很懂原根

先贴一份当模板吧

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
typedef long long ll;
using namespace std;
const int mo=;
const int g=;
int e[],a[*],b[*],jc[],d[],ni[],r[*];
int w[][],ans[],rg[];
int cas,m,n;
bool cmp(int a,int b)
{
return a>b;
} ll quick(ll x,int y)
{
ll s=;
while (y)
{
if (y&) s=s*x%mo;
x=x*x%mo; y>>=;
}
return s;
}
void ntt(int *a, int f)
{
for (int i=; i<n; i++)
if (i<r[i]) swap(a[i],a[r[i]]);
int now=;
for (int i=; i<n; i<<=)
{
int p=w[++now][f];
for (int j=; j<n; j+=i<<)
{
int w=;
for (int k=; k<i; k++)
{
int u=a[k+j],v=1ll*w*a[j+k+i]%mo;
a[j+k]=(u+v)%mo;
a[j+k+i]=(u-v+mo)%mo;
w=1ll*w*p%mo;
}
}
}
} int main()
{
freopen("1.in","r",stdin);
int now=(mo-)/,ng=quick(g,mo-),l=;
while (now%==)
{
w[++l][]=quick(g,now);
w[l][]=quick(ng,now);
rg[l]=quick(<<l,mo-);
now>>=;
}
jc[]=d[]=ni[]=;
for (int i=; i<=; i++)
{
jc[i]=1ll*jc[i-]*i%mo;
ni[i]=quick(jc[i],mo-);
d[i]=*d[i-]%mo;
}
scanf("%d",&cas);
while (cas--)
{
scanf("%d",&m);
for (int i=; i<=m; i++)
scanf("%d",&e[i]);
sort(e+,e++m,cmp);
memset(a,,sizeof(a));
memset(b,,sizeof(b));
for (int i=; i<=m; i++)
a[i]=1ll*jc[i-]*d[m-i]%mo*e[i]%mo;
for (int i=; i<=m; i++)
b[m-i]=ni[i];
/* for (int i=m+1; i<2*m+1; i++)
{
int s=0;
for (int j=0; j<=i; j++) s=(s+1ll*a[j]*b[i-j]%mo)%mo;
cout <<1ll*s*ni[i-m-1]%mo<<" ";
}
cout <<endl;
break;*/
int l=;
for (n=; n<=*m+; n<<=) l++;
for (int i=; i<n; i++) r[i]=(r[i>>]>>)|((i&)<<(l-));
ntt(a,); ntt(b,);
for (int i=; i<n; i++) a[i]=1ll*a[i]*b[i]%mo;
ntt(a,);
for (int i=m+; i<*m+; i++)
ans[i-m]=1ll*a[i]*ni[i-m-]%mo*rg[l]%mo;
for (int i=; i<=m; i++)
ans[i]=(ans[i-]+ans[i])%mo;
for (int i=; i<=m; i++)
printf("%d ",ans[i]);
cout <<endl;
}
return ;
}

hdu5829的更多相关文章

  1. HDU5829 NTT

    以下这份代码并没有过.但感觉没有问题.不是蜜汁WA就是蜜汁T. #include <cstdio> #include <iostream> #include <cstri ...

  2. hdu5829 Rikka with Subset

    首先考虑本题的$O(n^2)$做法. $Part1$ 对原序列从大到小排序后,考虑每个数字对最终答案的贡献,有第x个数字对答案的贡献十分难以计算,所以考虑计算数字x是集合第K大的方案数,作为数字x对$ ...

  3. 多项式相关&&生成函数相关&&一些题目(updating...)

    文章目录 多项式的运算 多项式的加减法,数乘 多项式乘法 多项式求逆 多项式求导 多项式积分 多项式取对 多项式取exp 多项式开方 多项式的除法/取模 分治FFT 生成函数 相关题目 多项式的运算 ...

随机推荐

  1. web相关基础知识1

    2017-12-13 09:47:11 关于HTML 1.绝对路径和相对路径 相对路径:相对于文件自身为参考. (工作中一般是使用相对路径) 这里我们用html文件为参考.如果说html和图片平级,那 ...

  2. [剑指Offer] 41.和为S的连续正数序列

    题目描述 小明很喜欢数学,有一天他在做数学作业时,要求计算出9~16的和,他马上就写出了正确答案是100.但是他并不满足于此,他在想究竟有多少种连续的正数序列的和为100(至少包括两个数).没多久,他 ...

  3. struts标签中的select

    <!-- Struts下拉列表标签: name="deptId" 下拉列表标签的名称(服务器根据这个名称获取选择的项的实际的值value值) headerKey 默认选择项的 ...

  4. BZOJ5110 CodePlus2017Yazid 的新生舞会(线段树)

    考虑统计每个数字的贡献.设f[i]为前缀i中该数的出现次数,则要统计f[r]-f[l]>(r-l)/2的数对个数,也即2f[r]-r>2f[l]-l. 注意到所有数的f的总变化次数是线性的 ...

  5. P2161 [SHOI2009]会场预约

    题目描述 PP大厦有一间空的礼堂,可以为企业或者单位提供会议场地.这些会议中的大多数都需要连续几天的时间(个别的可能只需要一天),不过场地只有一个,所以不同的会议的时间申请不能够冲突.也就是说,前一个 ...

  6. hdu 6203 ping ping ping(LCA+树状数组)

    hdu 6203 ping ping ping(LCA+树状数组) 题意:给一棵树,有m条路径,问至少删除多少个点使得这些路径都不连通 \(1 <= n <= 1e4\) \(1 < ...

  7. 【COGS 1534】 [NEERC 2004]K小数 &&【COGS 930】 [河南省队2012] 找第k小的数 可持久化01Trie

    板子题,只是记得负数加fix最方便 #include <cstdio> ,N=; namespace FIFO { <<],*S=B,*T=B; #define getc() ...

  8. 关于session variables 和 global variables

    背景 有同学问到这样一个问题:原来的binlog格式是statement,为什么执行了 set global binlog_format='row' 和 set binlog_format='row' ...

  9. fastjson解析服务端返回的数据

    1.配置依赖 //fastjson api 'com.alibaba:fastjson:1.2.44' 2.设计服务端返回的数据 {},{},{}]} 3.编写bean类,特别注意,要和服务端返回的类 ...

  10. 在Idea中使用Eclipse编译器

    Eclipse编译器对Javac编译器的优点如下: 1.Proceed on errors 如果使用Javac编译器,你除了在执行之前修复所有错误之外没有其它的选择.然而Eclipse编译器却可以不管 ...