[BZOJ4537][Hnoi2016]最小公倍数 奇怪的分块+可撤销并查集
4537: [Hnoi2016]最小公倍数
Time Limit: 40 Sec Memory Limit: 512 MB
Submit: 1474 Solved: 521
[Submit][Status][Discuss]
Description
给定一张N个顶点M条边的无向图(顶点编号为1,2,…,n),每条边上带有权值。所有权值都可以分解成2^a*3^b
的形式。现在有q个询问,每次询问给定四个参数u、v、a和b,请你求出是否存在一条顶点u到v之间的路径,使得
路径依次经过的边上的权值的最小公倍数为2^a*3^b。注意:路径可以不是简单路径。下面是一些可能有用的定义
:最小公倍数:K个数a1,a2,…,ak的最小公倍数是能被每个ai整除的最小正整数。路径:路径P:P1,P2,…,Pk是顶
点序列,满足对于任意1<=i<k,节点Pi和Pi+1之间都有边相连。简单路径:如果路径P:P1,P2,…,Pk中,对于任意1
<=s≠t<=k都有Ps≠Pt,那么称路径为简单路径。
Input
输入文件的第一行包含两个整数N和M,分别代表图的顶点数和边数。接下来M行,每行包含四个整数u、v、a、
b代表一条顶点u和v之间、权值为2^a*3^b的边。接下来一行包含一个整数q,代表询问数。接下来q行,每行包含四
个整数u、v、a和b,代表一次询问。询问内容请参见问题描述。1<=n,q<=50000、1<=m<=100000、0<=a,b<=10^9
Output
对于每次询问,如果存在满足条件的路径,则输出一行Yes,否则输出一行 No(注意:第一个字母大写,其余
字母小写) 。
Sample Input
1 2 1 3
1 3 1 2
1 4 2 1
2 4 3 2
3 4 2 2
5
1 4 3 3
4 2 2 3
1 3 2 2
2 3 2 2
1 3 4 4
Sample Output
Yes
Yes
No
No
HINT
Source
考虑暴力做法,对于每一个询问,暴力加入满足询问的边,然后维护联通性和maxp,maxqmaxp,maxq,如果满足条件则YesYes。
两个条件的限制似乎很难用别的数据结构优化掉,那么考虑分块,先以pp为第一关键字,qq为第二关键字排序,每$m^{0.5}$分成一块。然后把每一个询问归类到相应的块中,使得这个询问的$p$大于等于块的$p$最小值小于等于最大值。
依次扫每个块,把每个块的询问取出来。设当前的块号是$i$,那么我们把$1$到$i-1$的块里面的所有的边按$b$排序,
再把这个块内的询问按$q$排序。然后扫$1$到$i-1$的符合当前询问的边,加入并查集。对于i块内的边,只能暴力扫然后加入并查集了,注意处理完这个询问后,要撤销掉在该块内加入的边。
所以此题的并查集不能路径压缩,要用启发式合并或按秩合并,两者都是$logn$的,总的时间复杂度时$O(n^{1.5}logn)$。
将代码中的启发式换成按秩合并可AC否则TLE
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define ll long long
#define maxn 140105
using namespace std;
int read() {
int x=,f=;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-;
for(;isdigit(ch);ch=getchar()) x=x*+ch-'';
return x*f;
}
int n,m,k;
struct data {
int a,b,p,q,id,f;
bool operator <(const data tmp) const{
return p==tmp.p?q<tmp.q:p<tmp.p;
}
}e[maxn],ask[maxn],tmp[maxn],sta[maxn];
int fa[maxn],sz,ma[maxn],mb[maxn],size[maxn];
int ans[maxn];
int find(int x) {return fa[x]==x?fa[x]:find(fa[x]);}
int cnt=;
void merge(int x,int y,int a,int b) {
x=find(x),y=find(y);
if(size[x]>size[y]) swap(x,y);
sta[++cnt].a=x;sta[cnt].b=y;sta[cnt].p=ma[y];sta[cnt].q=mb[y];sta[cnt].f=fa[x];sta[cnt].id=size[y];
if(x==y) {
ma[x]=max(ma[x],a);
mb[x]=max(mb[x],b);
}
else {
fa[x]=y;
size[y]+=size[x];
ma[y]=max(ma[y],a);
mb[y]=max(mb[y],b);
ma[y]=max(ma[x],ma[y]);
mb[y]=max(mb[x],mb[y]);
}
}
bool cmp(data a,data b) {return a.q==b.q?a.p<b.p:a.q<b.q;}
int main() { n=read(),m=read();
for(int i=;i<=m;i++) {
e[i].a=read();e[i].b=read();e[i].p=read();e[i].q=read();
}
sort(e+,e+m+);
sz=sqrt(m);
k=read();
for(int i=;i<=k;i++) {
ask[i].a=read(),ask[i].b=read(),ask[i].p=read(),ask[i].q=read();ask[i].id=i;
}
sort(ask+,ask+k+,cmp);
for(int i=;i<=m;i+=sz) {
int top=;
for(int j=;j<=k;j++) if(ask[j].p>=e[i].p&&(i+sz>m||ask[j].p<e[i+sz].p)) tmp[++top]=ask[j];
sort(e+,e+i,cmp);
for(int j=;j<=n;j++) fa[j]=j,size[j]=,ma[j]=mb[j]=-;
int w=;
for(int j=;j<=top;j++) {
for(;w<i;w++) {
if(e[w].q>tmp[j].q) break;
merge(e[w].a,e[w].b,e[w].p,e[w].q);
}
cnt=;
for(int t=i;t<i+sz;t++) {
if(e[t].p<=tmp[j].p&&e[t].q<=tmp[j].q) merge(e[t].a,e[t].b,e[t].p,e[t].q);
}
int t1=find(tmp[j].a),t2=find(tmp[j].b);
if(t1==t2&&ma[t1]==tmp[j].p&&mb[t1]==tmp[j].q) ans[tmp[j].id]=;
while(cnt) {
fa[sta[cnt].a]=sta[cnt].f;
ma[sta[cnt].b]=sta[cnt].p;
mb[sta[cnt].b]=sta[cnt].q;
size[sta[cnt].b]=sta[cnt].id;
cnt--;
}
}
}
for(int i=;i<=k;i++) if(ans[i]) puts("Yes");else puts("No"); }
[BZOJ4537][Hnoi2016]最小公倍数 奇怪的分块+可撤销并查集的更多相关文章
- [BZOJ4537][HNOI2016]最小公倍数(分块+并查集)
4537: [Hnoi2016]最小公倍数 Time Limit: 40 Sec Memory Limit: 512 MBSubmit: 1687 Solved: 607[Submit][Stat ...
- BZOJ4537 HNOI2016最小公倍数(莫队+并查集)
考虑边只有一种权值的简化情况.那么当且仅当两点可以通过边权<=x的边连通,且连通块内最大边权为x时,两点间存在路径max为x的路径.可以发现两种权值是类似的,当且仅当两点可以通过边权1<= ...
- 【bzoj2049】[Sdoi2008]Cave 洞穴勘测——线段树上bfs求可撤销并查集
题面 2049: [Sdoi2008]Cave 洞穴勘测 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 12030 Solved: 6024 Desc ...
- bzoj2049 线段树 + 可撤销并查集
https://www.lydsy.com/JudgeOnline/problem.php?id=2049 线段树真神奇 题意:给出一波操作,拆边加边以及询问两点是否联通. 听说常规方法是在线LCT, ...
- CodeForces892E 可撤销并查集/最小生成树
http://codeforces.com/problemset/problem/892/E 题意:给出一个 n 个点 m 条边的无向图,每条边有边权,共 Q 次询问,每次给出 ki 条边,问这些边 ...
- BZOJ4358: permu(带撤销并查集 不删除莫队)
题意 题目链接 Sol 感觉自己已经老的爬不动了.. 想了一会儿,大概用个不删除莫队+带撤销并查集就能搞了吧,\(n \sqrt{n} logn\)应该卡的过去 不过不删除莫队咋写来着?....跑去学 ...
- 【离线 撤销并查集 线段树分治】bzoj1018: [SHOI2008]堵塞的交通traffic
本题可化成更一般的问题:离线动态图询问连通性 当然可以利用它的特殊性质,采用在线线段树维护一些标记的方法 Description 有一天,由于某种穿越现象作用,你来到了传说中的小人国.小人国的布局非常 ...
- codeforces 892E(离散化+可撤销并查集)
题意 给出一个n个点m条边的无向联通图(n,m<=5e5),有q(q<=5e5)个询问 每个询问询问一个边集{Ei},回答这些边能否在同一个最小生成树中 分析 要知道一个性质,就是权值不同 ...
- 【Codeforces576E_CF576E】Painting Edges(可撤销并查集+线段树分治)
题目 CF576E 分析: 从前天早上肝到明天早上qwq其实颓了一上午MC ,自己瞎yy然后1A,写篇博客庆祝一下. 首先做这题之前推荐一道很相似的题:[BZOJ4025]二分图(可撤销并查集+线段树 ...
随机推荐
- 201621044079WEEK06-接口、内部类
作业06-接口.内部类 1. 本周学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图或相关笔记,对面向对象思想进行一个总结. 注1:关键词与内容不求多 ...
- NET 的 ELK 监控方案
NET 的 ELK 监控方案 https://www.jianshu.com/p/3c26695cfc38 背景就不多说了,谁家没有个几个十系统在跑啊.如何监控这几十个系统的运行状况,对于非运营人员来 ...
- 【转】Visio画用例模型图竟然没有include关系
转自:http://blog.csdn.net/shuixin536/article/details/8289746 由于电脑上没有安装Rose,因此决定用visio来画UML中的用例模型图,在绘制的 ...
- C++——类继承以及类初始化顺序
对于类以及类继承, 几个主要的问题:1) 继承方式: public/protected/private继承. 这是c++搞的, 实际上继承方式是一种允许子类控制的思想. 子类通过public继承, 可 ...
- 【BZOJ】2453: 维护队列【BZOJ】2120: 数颜色 二分+分块(暴力能A)
先说正解:把所有相同的数相成一个链在每一个区间里的种数就是不同链的链头,那么记录每个数的上个相同数所在位置,那么只要找出l到r之间前驱值在l之前的数的个数就可以了 本人打的暴力,有一个小技巧,用cha ...
- 分享一些JavaScript简易小技巧
特性检测而非浏览器检测 因为某某特性某浏览器不支持,我们经常的做法是在代码中直接先做浏览器判断如: 1 if(Broswer.isFirfox){ 2 //do something 3 } 其 ...
- 如何获取iframe DOM的值
在Web开发时,很多时候会遇到一个问题.我在一个页面嵌入了iframe,并且我想获得这个iframe页面某个元素的值.那么该如何实现这个需求呢? 先来看下演示: 效果演示 iframe1中文本框的值: ...
- Codeforces Round #526 (Div. 2) E. The Fair Nut and Strings
E. The Fair Nut and Strings 题目链接:https://codeforces.com/contest/1084/problem/E 题意: 输入n,k,k代表一共有长度为n的 ...
- HDU 多校对抗 F Naive Operations
Naive Operations Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 502768/502768 K (Java/Other ...
- DES 加密解密
[概念] 数据加密算法(Data Encryption Algorithm,DEA)是一种对称加密算法,很可能是使用最广泛的密钥系统,特别是在保护金融数据的安全中,最初开发的DEA是嵌入硬件中的.通常 ...