[NOI.AC省选模拟赛3.30] Mas的童年 [二进制乱搞]
题面
思路
这题其实蛮好想的......就是我考试的时候zz了,一直没有想到标记过的可以不再标记,总复杂度是$O(n)$
首先我们求个前缀和,那么$ans_i=max(pre[j]+pre[i]$ $xor$ $pre[j])$
考虑对于每个$pre[i]$,一个$pre[j]$在经过上述运算后增加的值
发现可以每一位拆开来考虑
那么有四种情况:$(p_i,p_j)=(0,0),(0,1),(1,0),(1,1)$
只有当$pre[i]$本位为0,$pre[j]$本位为1的时候,这一位会多出两倍的这一位的位值加入答案里面
那么相当于我们要对于前$i-1$个$pre$,求出真实值最大的一个二进制子集,满足这个子集在$pre[i]$里面都是0,而在某一个$1$到$i-1$的$pre[j]$中都是1
我们维护一个集合数组$s[i]$,表示$i$这个二进制组合有没有被目前已经加入的$pre[j]$覆盖
标记的时候从大的集合往子集里面走,遇到标记过的那就是肯定这个子集所有儿子都被标记过了,这样总的标记次数不会超过$O(max_{a_i})$
统计答案就很方便了,总时间复杂度$O(n\log m+m\log m)$($m$是序列的最大值)
Code
乱搞第一定律:乱搞程序短小精悍
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cassert>
#define ll long long
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') flag=-1;
ch=getchar();
}
while(isdigit(ch)) re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
int n,pre[1000010],s[2000010];
inline void insert(int x){
s[x]=1;
for(int i=19;i>=0;i--){
if(((x>>i)&1)&&(!s[x^(1<<i)])) insert(x^(1<<i));
}
}
inline int query(int x){
int re=0,i;
for(i=19;i>=0;i--){
if((!((x>>i)&1))&&(s[re|(1<<i)])) re|=(1<<i);
}
return re|x;
}
int main(){
n=read();int i;
for(i=1;i<=n;i++){
insert(pre[i]=pre[i-1]^read());
printf("%d ",(query(pre[i])<<1)-pre[i]);
}
}
[NOI.AC省选模拟赛3.30] Mas的童年 [二进制乱搞]的更多相关文章
- NOI.AC省选模拟赛第一场 T1 (树上高斯消元)
link 很容易对于每个点列出式子 \(f_{x,y}=(f_{x,y-1}+f_{x,y}+f_{x,y+1}+f_{x+1,y})/4\)(边角转移类似,略) 这个转移是相互依赖的就gg了 不过你 ...
- [NOI.AC省选模拟赛3.31] 星辰大海 [半平面交]
题面 传送门 思路 懒得解释了......也是比较简单的结论 但是自己看到几何就退缩了...... 下周之内写一个计算几何的学习笔记! Code #include<iostream> #i ...
- [NOI.AC省选模拟赛3.31] 附耳而至 [平面图+最小割]
题面 传送门 思路 其实就是很明显的平面图模型. 不咕咕咕的平面图学习笔记 用最左转线求出对偶图的点,以及原图中每个边两侧的点是谁 建立网络流图: 源点连接至每一个对偶图点,权值为这个区域的光明能量 ...
- [NOI.AC省选模拟赛3.23] 染色 [点分治+BFS序]
题面 传送门 重要思想 真的是没想到,我很久以来一直以为总会有应用的$BFS$序,最终居然是以这种方式出现在题目中 笔记:$BFS$序可以用来处理限制点对距离的题目(综合点分树使用) 思路 本题中首先 ...
- [NOI.AC省选模拟赛3.23] 集合 [数学]
题面 传送门 一句话题意: 给定$n\leq 1e9,k\leq 1e7,T\leq 1e9$ 设全集$U=\lbrace 1,2,3,...n\rbrace $,求$(min_{x\in S}\lb ...
- [noi.ac省选模拟赛]第12场题解集合
题目 比赛界面. T1 数据范围明示直接\(O(n^2)\)计算,问题就在如何快速计算. 树上路径统计通常会用到差分方法.这里有两棵树,因此我们可以做"差分套差分",在 A 树上对 ...
- [noi.ac省选模拟赛]第10场题解集合
题目 比赛界面. T1 不难想到,对于一个与\(k\)根棍子连接的轨道,我们可以将它拆分成\(k+1\)个点,表示这条轨道不同的\(k+1\)段. 那么,棍子就成为了点与点之间的边.可以发现,按照棍子 ...
- [noi.ac省选模拟赛]第11场题解集合
题目 比赛界面. T1 比较简单.容易想到是求鱼竿的最大独立集.由于题目的鱼竿可以被分割为二分图,就可以想到最大匹配. 尝试建边之后会发现边的数量不小,但联系题目性质会发现对于一条鱼竿,它 ...
- [noi.ac省选模拟赛20200606]赌怪
题目 点这里看题目. 分析 先特判掉\(K=2\)的情况. 首先可以考虑到一个简单 DP : \(f(i)\):前\(i\)张牌的最大贡献. 转移可以\(O(n^2)\)地枚举区间 ...
随机推荐
- .net core 发布到docker
1. 安装docker-desktop,windows环境安装包 官方网站:https://www.docker.com/ 2.注册登陆Docker账号 安装成功后,在官方网站注册一个账号,使用账号登 ...
- PHP中对字符串的一些操作
php中判断字符串在另一个字符串中是否存在(strpos): if(strpos('www.baidu.com', 'www') !== false){ // 存在 }else{ // 不存在 } p ...
- Yaf学习(二)----Yaf初体验
1.hello world 1.1 用yaf输出hello world 1.首先配置host,nginx 2.host不用多说,指向虚拟机IP即可 1.2 重点说一下nginx (只说server块) ...
- eclipse 右键没有Build Path
如果Project Explorer右键没有build pathWindow ->show view 选择package explorer 参考https://blog.csdn.net/cod ...
- 中恳中笨 搭建flask封装环境
话不多说,先干再说..... 打开pycharm,创建一个关于flask的项目 2.创建一个App的文件包 3.把staic和templates文件包拖进App里 4.把app.py文件改为manag ...
- tarnado源码解析系列一
目录 tarnado tarnado源码安装 tarnado测试程序 application类的解析 一. tarnado简介 最近在学习Python,无意间接触到的tarnado,感觉tarnado ...
- Typora -- 书写即美学
#Typora -- 书写即美学 ##基本快捷键--需要在所见即所想界面进行输入 加粗 Ctrl + B 加粗 斜体 Ctrl + I 斜体 下划线 Ctrl + U 下划线 删除线 Ctrl + S ...
- go学习笔记-结构体
结构体 结构体是由一系列具有相同类型或不同类型的数据构成的数据集合 定义 格式 type struct_variable_type struct { member definition; member ...
- Tapestry 权威讲解-备份
http://blog.csdn.net/mindhawk/article/details/5021371#introduction
- Solution to LeetCode Problem Set
Here is my collection of solutions to leetcode problems. Related code can be found in this repo: htt ...