感觉这题很厉害啊,虽然想了一天多但还是失败了……(;д;)

  这题首先注意到给定图中如果存在环其实对于答案是没有影响的。然后关键之处就在于两个 \(dp\) 数组,其中 \(f[u]\) 表示以 \(u\) 为根的子树中能构成仙人掌的方案数, 而 \( g[x] \) 则表示 \(x\) 个节点之间两两相互搭配(可以不搭配)的总方案数。转移则为:

 \(f[u] = \prod f[v] * g[tot + [u != root]]\)

  其中 \(v\) 为 \(u\) 的儿子节点,而 \(tot\) 表示 \(u\) 的总儿子个数。为什么这样做是对的呢?我也感到非常的困惑。之前自己在思考的时候其实有一个问题一直难住我:一个节点的儿子之间可以相互连边,这怎样处理?但此时我们将这些方案巧妙地连接在了一起。我们可以默认为求出来的 \(f[u]\) 中的方案数均为有一条边连向外界的方案。当这个方案匹配到另一子树的一种方案上的时候,表示这两条连向外界的边连接在了一起。若有没有匹配的,说明这条边没有连出去或连向根节点(若连向根节点且该点为儿子节点则说明没有连出去),但一样是合法的。

  非常的厉害啊~其实感觉自己现在各种知识储备都还算可以了,但就是不够大胆,不能勇敢的提出一些想法和设想。一定要努力放开自己的思维,先猜测,再证明~

#include <bits/stdc++.h>
using namespace std;
#define maxn 1000000
#define mod 998244353
#define int long long
int n, m, dep[maxn], g[maxn];
int timer, dfn[maxn], f[maxn];
int fa[maxn], mark[maxn], tot;
int cnt, ans; struct edge
{
int cnp, head[maxn], to[maxn], last[maxn];
edge() { cnp = ; }
void add(int u, int v)
{
to[cnp] = v, last[cnp] = head[u], head[u] = cnp ++;
to[cnp] = u, last[cnp] = head[v], head[v] = cnp ++;
}
}E1; struct node
{
int id, dep;
}a[maxn]; bool cmp(node a, node b) { return a.dep < b.dep; } int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} void pre()
{
g[] = g[] = ;
for(int i = ; i < maxn; ++ i) g[i] = (g[i - ] + (i - )*g[i - ]) % mod;
return;
} void Tarjan(int u)
{
dfn[u] = ++ timer;
for(int i = E1.head[u]; i; i = E1.last[i])
{
int v = E1.to[i]; if(dfn[v]) continue;
fa[v] = u; dep[v] = dep[u] + ; Tarjan(v);
}
return;
} void dfs(int u, int rt)
{
mark[u] = -; f[u] = ; int tot = ;
for(int i = E1.head[u]; i; i = E1.last[i])
{
int v = E1.to[i]; if(v == fa[u] || mark[v] != ) continue;
tot ++; dfs(v, ); f[u] = f[u] * f[v] % mod;
}
if(!rt) f[u] = f[u] * g[tot + ] % mod;
else f[u] = f[u] * g[tot] % mod;
return;
} void Work()
{
n = read(), m = read(); E1.cnp = ;
for(int i = ; i <= n; i ++) mark[i] = fa[i] = dep[i] = dfn[i] = E1.head[i] = ;
for(int i = ; i <= m; i ++)
{
int u = read(), v = read();
E1.add(u, v);
}
dep[] = ; Tarjan();
for(int i = ; i <= m; i ++)
{
int u = E1.to[i << ], v = E1.to[i << | ];
if(dfn[u] < dfn[v]) swap(u, v);
while(u != v)
{
if(mark[u] == ) { printf("0\n"); return; }
mark[u] ++; u = fa[u];
}
}
for(int i = ; i <= n; i ++) a[i].id = i, a[i].dep = dep[i];
sort(a + , a + n + , cmp); ans = ;
for(int i = ; i <= n; i ++)
{
int x = a[i].id; if(mark[x] == -) continue;
dfs(x, ); ans = ans * f[x] % mod;
}
printf("%lld\n", ans); return;
} signed main()
{
pre(); int T = read();
while(T --) Work();
return ;
}

  

【题解】ZJOI2017仙人掌的更多相关文章

  1. 【BZOJ4784】[ZJOI2017]仙人掌(Tarjan,动态规划)

    [BZOJ4784][ZJOI2017]仙人掌(Tarjan,动态规划) 题面 BZOJ 洛谷 题解 显然如果原图不是仙人掌就无解. 如果原图是仙人掌,显然就是把环上的边给去掉,变成若干森林连边成为仙 ...

  2. [BZOJ4784][ZJOI2017]仙人掌(树形DP)

    4784: [Zjoi2017]仙人掌 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 312  Solved: 181[Submit][Status] ...

  3. bzoj4784 [Zjoi2017]仙人掌

    Description 如果一个无自环无重边无向连通图的任意一条边最多属于一个简单环,我们就称之为仙人掌.所谓简单环即不经过重复的结点的环. 现在九条可怜手上有一张无自环无重边的无向连通图,但是她觉得 ...

  4. ●洛谷P3687 [ZJOI2017]仙人掌

    题链: https://www.luogu.org/problemnew/show/P3687题解: 计数DP,树形DP. (首先对于这个图来说,如果初始就不是仙人掌,那么就直接输出0) 然后由于本来 ...

  5. zjoi2017 仙人掌

    题解: 好难的dp啊...看题解看了好久才看懂 http://blog.csdn.net/akak__ii/article/details/65935711 如果一开始的图就不是仙人掌,答案显然为0, ...

  6. 【做题】ZJOI2017仙人掌——组合计数

    原文链接 https://www.cnblogs.com/cly-none/p/ZJOI2017cactus.html 给出一个\(n\)个点\(m\)条边的无向连通图,求有多少种加边方案,使得加完后 ...

  7. LOJ2250 [ZJOI2017] 仙人掌【树形DP】【DFS树】

    题目分析: 不难注意到仙人掌边可以删掉.在森林中考虑树形DP. 题目中说边不能重复,但我们可以在结束后没覆盖的边覆盖一个重复边,不改变方案数. 接着将所有的边接到当前点,然后每两个方案可以任意拼接.然 ...

  8. 2019.02.07 bzoj4784: [Zjoi2017]仙人掌(仙人掌+树形dp)

    传送门 题意:给一个无向连通图,问给它加边形成仙人掌的方案数. 思路: 先考虑给一棵树加边形成仙人掌的方案数. 这个显然可以做树形dp. fif_ifi​表示把iii为根的子树加边形成仙人掌的方案数. ...

  9. BZOJ4784 ZJOI2017仙人掌(树形dp+dfs树)

    首先考虑是棵树的话怎么做.可以发现相当于在树上选择一些长度>=2的路径使其没有交,同时也就相当于用一些没有交的路径覆盖整棵树. 那么设f[i]为覆盖i子树的方案数.转移时考虑包含根的路径.注意到 ...

随机推荐

  1. python的pymysql模块简介

    一.介绍 在python中用pymysql模块来对mysql进行操作,该模块本质就是一个套接字客户端软件,使用前需要事先安装 pip3 install pymysql 二.操作简介 import py ...

  2. Array-快餐管饱

    一.如何获得一个数组? rsp: 1. []  2.new Array() 3.str.split() ps:new Array()可以不加括号,其传一个参数代表数组长度,两个及以上就是初始化数组. ...

  3. cmd_menu.c

    #include <common.h>#include <config.h>#include <command.h> static char cmd_buf[200 ...

  4. 转译符,re模块,random模块

    一, 转译符 1.python 中的转译符 正则表达式中的内容在Python中就是字符串 ' \n ' : \ 转移符赋予了这个n一个特殊意义,表示一个换行符 ' \ \ n' :  \ \  表示取 ...

  5. 学会了 python 的pip方法安装第三方库

    超级开心啊!!!!!!!!!!!!! win10 打开cmd Installing with get-pip.py To install pip, securely download get-pip. ...

  6. UVA 1593 Alignment of Code(紫书习题5-1 字符串流)

    You are working in a team that writes Incredibly Customizable Programming Codewriter (ICPC) which is ...

  7. P2153 [SDOI2009]晨跑(最小费用最大流)

    题目描述 Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑.仰卧起坐等 等,不过到目前为止,他坚持下来的只有晨跑. 现在给出一张学校附近的地图,这张地图中包含N个十字路口和M条街 ...

  8. Android Studio modify language level to Java 8

    If you need use lambda, should modify language level File -> Project Structure -> app -> Pr ...

  9. MVC中Model 的Key值不建议用非int型

    一次在开发中,key的值用了 byte型,结果插入第一条正常,第二条开始就出错,原因是用byte类型无法实现自动增加1,所以为了方便,建议使用 int型. public virtual byte bk ...

  10. Plsql developer 怎么在打开时登陆配置oracel client?

    配置前 logon 这块是空白的,该怎么配置呢? 看下面 --> 安装完plsql 后 需要安装 oracle client, 这里不再赘述,请自行百度.下面将贴出如何使用 oracle cli ...