Problem Description
 

You live in a village but work in another village. You decided to follow the straight path between your house (A) and the working place (B), but there are several rivers you need to cross. Assume B is to the right of A, and all the rivers lie between them.

Fortunately, there is one "automatic" boat moving smoothly in each river. When you arrive the left bank of a river, just wait for the boat, then go with it. You're so slim that carrying you does not change the speed of any boat.

Days and days after, you came up with the following question: assume each boat is independently placed at random at time , what is the expected time to reach B from A? Your walking speed is always .

To be more precise, for a river of length L, the distance of the boat (which could be regarded as a mathematical point) to the left bank at time  is uniformly chosen from interval [, L], and the boat is equally like to be moving left or right, if it’s not precisely at the river bank.
Input
There will be at most  test cases. Each case begins with two integers n and D, where n ( <= n <= ) is the number of rivers between A and B, D ( <= D <= ) is the distance from A to B. Each of the following n lines describes a river with  integers: p, L and v ( <= p < D,  < L <= D,  <= v <= ). p is the distance from A to the left bank of this river, L is the length of this river, v is the speed of the boat on this river. It is guaranteed that rivers lie between A and B, and they don’t overlap. The last test case is followed by n=D=, which should not be processed.
 
Output
For each test case, print the case number and the expected time, rounded to  digits after the decimal point.

Print a blank line after the output of each test case.
 
Sample Input

 
Sample Output
Case : 1.000
Case : 1.000
 
 
 
 
Source
 
题目大意:A、B两点之间距离为D,并且在A、B之间有n条河,每条河上有一条自动船。船的宽度为L,把船看成一个点时,则它在第0时刻的位置是任意的,并且向两岸划动的可能性也是相同的。已知步行的速度为1,船的速度为v,每条河与A点的距离为P,求A到B花费的时间是多少。
 
分析:由题意不难得出,船在0时刻在河上的位置满足均匀分布,那么由均匀分布我们可知它的数学期望E = L/2。船向左岸划的概率等于向右岸划的概率为1/2,因为人只有通过船到左岸上船,再向右岸划动,才能过河。所以当船向左岸划的时候,那它到达左岸的期望时间T1 = L/2 * 1/2 / v;当船向右岸划,那它到达的左岸的期望时间T2 = (L/2 + L) * 1 / 2 / v;最后再从左岸到右岸的时间为T3 = L / v;所以过河的总期望时间为T = T1 + T2 + T3 = 2L / v;
 #include<stdio.h>
int main()
{
int n, i, cas = , d, p, l, v;
while(~scanf("%d%d",&n,&d), n+d)
{
double ans = d*1.0;
for(i = ; i < n; i++)
{
scanf("%d%d%d",&p, &l, &v);
ans -= l; //减去不过这条河时所用的时间
ans += 2.0*l / v; //加上过河时间
}
printf("Case %d: %.3lf\n\n",++cas, ans);
}
return ;
}

hdu 3232 Crossing Rivers(期望 + 数学推导 + 分类讨论,水题不水)的更多相关文章

  1. UVa 12230 && HDU 3232 Crossing Rivers (数学期望水题)

    题意:你要从A到B去上班,然而这中间有n条河,距离为d.给定这n条河离A的距离p,长度L,和船的移动速度v,求从A到B的时间的数学期望. 并且假设出门前每条船的位置是随机的,如果不是在端点,方向也是不 ...

  2. hdu 3232 Crossing Rivers 过河(数学期望)

    题意:你在点A,目的地是点B,A和B的距离为D.中间隔了好多条河(所有河不会重叠),每条河有3个参数(P,L,V),其中P表示距离A点的长度,L表示河的长度,V表示河里的船的速度.假设每条河中仅有1条 ...

  3. UVa 12230 - Crossing Rivers(数学期望)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  4. poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)

    Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...

  5. HDU 5858 Hard problem (数学推导)

    Hard problem 题目链接: http://acm.split.hdu.edu.cn/showproblem.php?pid=5858 Description cjj is fun with ...

  6. UVA.12230.Crossing Rivers(期望)

    题目链接 /* 到达一条河时,船在河中的位置是随机的,所以船到达岸边需要的时间在 0~2l/v 均匀分布,所以船到岸的期望为 (0+2l/v)/2 过河需要 l/v 的时间,所以过一条河总的期望为 ( ...

  7. hdu 5584 LCM Walk(数学推导公式,规律)

    Problem Description A frog has just learned some number theory, and can't wait to show his ability t ...

  8. hdu 4715 Difference Between Primes 2013年ICPC热身赛A题 素数水题

    题意:给出一个偶数(不论正负),求出两个素数a,b,能够满足 a-b=x,素数在1e6以内. 只要用筛选法打出素数表,枚举查询下就行了. 我用set储存素数,然后遍历set里面的元素,查询+x后是否还 ...

  9. HDU 4772 Zhuge Liang's Password (2013杭州1003题,水题)

    Zhuge Liang's Password Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

随机推荐

  1. hdu 5178 pairs (线性探查问题)

    Problem Description John has n points on the X axis, and their coordinates are (x[i],),(i=,,,…,n−). ...

  2. mysql 存储过程:提供查询语句并返回查询执行影响的行数

    mysql 存储过程:提供查询语句并返回查询执行影响的行数DELIMITER $$ DROP PROCEDURE IF EXISTS `p_get_select_row_number`$$ CREAT ...

  3. [RxJS] Handling Multiple Streams with Merge

    You often need to handle multiple user interactions set to different streams. This lesson shows hows ...

  4. Android UI开发详解之ActionBar .

    在Android3.0之后,Google对UI导航设计上进行了一系列的改革,其中有一个非常好用的新功能就是引入的ActionBar,他用于取代3.0之前的标题栏,并提供更为丰富的导航效果. 一.添加A ...

  5. java后台訪问url连接——HttpClients

    java后台訪问url,并传递数据--通过httpclient方式 须要的包,包可能多几个额外的,假设无用或者冲突删除就可以.httpclient是使用的是4.4.1的版本号:http://downl ...

  6. C#冒泡泡算法

    代码如下: static void Main(string[] args)         {             int[] arr = new int[] { 87, 85, 89, 84, ...

  7. 一张图搞懂 Javascript 中的原型链、prototype、__proto__的关系 转载加自己的总结

    1. JavaScript内置对象 所谓的内置对象 指的是:JavaScript本身就自己有的对象 可以直接拿来就用.例如Array String 等等.JavaScript一共有12内置对象    ...

  8. Samba的ADS域模式和RPC域模式

    对于Samba服务器,有两种域安全模式,加入到Windows 2000或者Windows 2003域控制器(DC‘s)控制的域中: RPC 模式 RPC(远程过程调用)模式的域成员是"NT4 ...

  9. Stm32高级定时器(二)

    Stm32高级定时器(二) 1 主从模式:主?从? 谈论主从,可知至少有两个以上的触发或者驱动信号,stm32内部有多个定时器,可以相互之间驱动或者控制. 主模式:定时器使能只受驱动时钟控制或者输出控 ...

  10. oracle之substr函数

    substr(字符串,截取开始位置,截取长度) //返回截取的字 substr(,) //返回结果为 'H' *从字符串第一个字符开始截取长度为1的字符串 substr(,) //返回结果为 'H' ...