NOI2007 生成树计数
题目
首先我要吐槽,这题目就是坑,给那么多无用的信息,我还以为要根据提示才能做出来呢!
算法1
暴力,傻傻地跟着提示,纯暴力\(40\)分,高斯消元\(60\)分。
算法2
DP!一个显然的东西是,这个矩阵有很多地方都是\(0\),所以我们枚举的许多排列都是无用的。
设\(f(i,set)\),其中\(i\)表示计算到排列的第\(i\)个元素,或者说是到矩阵的第\(i\)行,\(set\)是一个集合,表示前一行哪些数字还没选,可知\(set\)的大小为\(2k\)(这样我们才能DP嘛)。\(f\)的值表示当前计算到的行列式的值。
然后转移的时候我们要统计新产生的逆序对,进而判断是否要乘\(-1\)。
时间复杂度\(O(2^{2k}nk)\)。
算法3
直接DP,不要想什么矩阵。
假设我们DP到了第\(i\)位,显然有用的信息只有\(i-k \sim i-1\)这\(k\)个点的连通性。
然后暴力出所有的状态(要最小表示法,只有\(52\)种状态),搞出它们之间的转移,然后直接矩阵乘法即可。时间复杂度\(O(52^3 \log n)\)。
代码
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <assert.h>
using namespace std;
#ifdef debug
#define ep(...) fprintf(stderr, __VA_ARGS__)
#else
#define ep(...) assert(true)
#endif
typedef long long i64;
const int MAXK = 5;
const int MAXS = 60;
const int MOD = 65521;
const int LOGN = 60;
const int HASHSIZE = 1 << MAXK * 3;
int cntS;
int k;
i64 n;
struct MatrixB {
i64 A[MAXS][MAXS];
i64* operator [] (const int &x) {
return A[x];
}
};
struct MatrixA {
i64 A[MAXS];
i64 &operator [] (const int &x) {
return A[x];
}
};
void multi(MatrixB &A, MatrixB &B, MatrixB &C) {
for (int i = 0; i < cntS; i ++)
for (int j = 0; j < cntS; j ++) {
C[i][j] = 0;
for (int k = 0; k < cntS; k ++)
C[i][j] += A[i][k] * B[k][j];
C[i][j] %= MOD;
}
}
void multi(MatrixA &A, MatrixB &B, MatrixA &C) {
for (int i = 0; i < cntS; i ++) {
C[i] = 0;
for (int j = 0; j < cntS; j ++)
C[i] += B[j][i] * A[j];
C[i] %= MOD;
}
}
MatrixB B[LOGN];
struct Status {
int A[MAXK];
int &operator [] (const int &x) {
return A[x];
}
int transform() {
int ret = 0;
for (int i = k - 1; i >= 0; i --) {
ret <<= 3;
ret |= A[i];
}
return ret;
}
void show() {
#ifdef debug
for (int i = 0; i < k; i ++)
ep("%d ", A[i]);
ep("\n");
#endif
}
};
int hash[HASHSIZE];
#define test(s, i) (((s) >> (i)) & 1)
Status transform(int x) {
Status ret;
for (int i = 0; i < k; i ++) {
ret[i] = x & 7;
x >>= 3;
}
return ret;
}
int dfs(int f) {
Status cur = transform(f);
if (hash[f] == -1) {
hash[f] = cntS ++;
int cnt[MAXK];
fill(cnt, cnt + k, 0);
for (int i = 0; i < k; i ++)
cnt[cur[i]] ++;
for (int s = 0; s < 1 << k; s ++) {
int con = 1;
Status nxt = cur;
int in = -1;
if (cnt[0] == 1 && test(s, 0) == 0) continue;
for (int i = 0; i < k; i ++)
if (test(s, i)) {
con *= cnt[i];
if (in == -1) in = i;
else {
for (int j = 0; j < k; j ++)
if (nxt[j] == i) nxt[j] = in;
}
}
if (! con) continue;
static int mapTo[MAXK];
fill(mapTo, mapTo + MAXK, -1);
int z = 0;
for (int i = 1; i < k; i ++)
if (mapTo[nxt[i]] == -1) {
mapTo[nxt[i]] = z ++;
}
for (int i = 0; i + 1 < k; i ++)
nxt[i] = mapTo[nxt[i + 1]];
nxt[k - 1] = in == -1 || mapTo[in] == -1 ? z : mapTo[in];
cur.show();
ep("%d %d\n", s, con);
nxt.show();
ep("--------------\n");
int h = nxt.transform();
int idx = dfs(h);
B[0][hash[f]][idx] += con;
B[0][hash[f]][idx] %= MOD;
}
}
return hash[f];
}
MatrixA A, tA;
void dfs2(int cur, Status s, int combination) {
if (cur == k) {
s.show();
ep("%d\n-----------\n", combination);
int idx = hash[s.transform()];
A[idx] += combination;
A[idx] %= MOD;
}
else {
int cnt[MAXK];
fill(cnt, cnt + cur + 1, 0);
for (int i = 0; i < cur; i ++)
cnt[s[i]] ++;
for (int S = 0; S < 1 << cur; S ++) {
int con = 1;
Status nxt = s;
nxt[cur] = -1;
for (int i = 0; i < cur; i ++)
if (test(S, i)) {
con *= cnt[i];
if (nxt[cur] == -1) nxt[cur] = i;
else {
for (int j = 0; j < cur; j ++)
if (nxt[j] == i) nxt[j] = nxt[cur];
}
}
if (! con) continue;
static int mapTo[MAXK];
int z = 0;
fill(mapTo, mapTo + cur, -1);
for (int i = 0; i < cur; i ++) {
if (mapTo[nxt[i]] == -1) {
mapTo[nxt[i]] = z ++;
}
nxt[i] = mapTo[nxt[i]];
}
if (nxt[cur] == -1) {
int x = 0;
while (true) {
bool ok = true;
for (int i = 0; i < cur; i ++)
if (nxt[i] == x) {
ok = false;
break;
}
if (! ok) x ++;
else break;
}
nxt[cur] = x;
}
dfs2(cur + 1, nxt, combination * con);
}
}
}
int main() {
#ifndef ONLINE_JUDGE
freopen("count.in", "r", stdin);
freopen("count.out", "w", stdout);
#endif
scanf("%d%lld", &k, &n);
memset(hash, -1, sizeof hash);
dfs(0);
ep("find %d\n", cntS);
ep("-----------\n");
for (int i = 0; i < cntS; i ++) {
for (int j = 0; j < cntS; j ++)
ep("%d ", B[0][i][j]);
ep("\n");
}
ep("===================\n");
for (int i = 1; i < LOGN; i ++)
multi(B[i - 1], B[i - 1], B[i]);
Status s;
dfs2(0, s, 1);
ep("-----------\n");
for (int i = 0; i < cntS; i ++)
ep("%d ", A[i]);
ep("\n");
ep("===================\n");
n -= k;
for (int i = 0; i < LOGN; i ++)
if (n >> i & 1) {
tA = A;
multi(tA, B[i], A);
}
i64 ans = 0;
for (int i = 0; i < HASHSIZE; i ++)
if (hash[i] != -1) {
Status x = transform(i);
bool ok = true;
for (int j = 1; j < k; j ++)
if (x[j] != x[j - 1]) {
ok = false;
break;
}
if (ok) ans += A[hash[i]];
}
ans %= MOD;
printf("%d\n", (int) ans);
ep("%lld\n", ans);
return 0;
}
NOI2007 生成树计数的更多相关文章
- BZOJ1494 [NOI2007]生成树计数
题意 F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser autoint Logout 捐赠本站 Probl ...
- [BZOJ1494][NOI2007]生成树计数 状压dp 并查集
1494: [NOI2007]生成树计数 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 793 Solved: 451[Submit][Status][ ...
- [NOI2007]生成树计数环形版
NOI2007这道题人类进化更完全之后出现了新的做法 毕姥爷题解: 于是毕姥爷出了一道环形版的这题(test0814),让我们写这个做法 环形的情况下,k=5的时候是162阶递推. 求这个递推可以用B ...
- [BZOJ1494]生成树计数
[BZOJ1494] [NOI2007]生成树计数 Description 最近,小栋在无向连通图的生成树个数计算方面有了惊人的进展,他发现:·n个结点的环的生成树个数为n.·n个结点的完全图的生成树 ...
- 【BZOJ1494】【NOI2007】生成树计数(动态规划,矩阵快速幂)
[BZOJ1494][NOI2007]生成树计数(动态规划,矩阵快速幂) 题面 Description 最近,小栋在无向连通图的生成树个数计算方面有了惊人的进展,他发现: ·n个结点的环的生成树个数为 ...
- 【BZOJ1002】【FJOI2007】轮状病毒(生成树计数)
1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1766 Solved: 946[Submit][Status ...
- SPOJ 104 HIGH - Highways 生成树计数
题目链接:https://vjudge.net/problem/SPOJ-HIGH 解法: 生成树计数 1.构造 基尔霍夫矩阵(又叫拉普拉斯矩阵) n阶矩阵 若u.v之间有边相连 C[u][v]=C[ ...
- Luogu P5296 [北京省选集训2019]生成树计数
Luogu P5296 [北京省选集训2019]生成树计数 题目链接 题目大意:给定每条边的边权.一颗生成树的权值为边权和的\(k\)次方.求出所有生成树的权值和. 我们列出答案的式子: 设\(E\) ...
- Loj 2320.「清华集训 2017」生成树计数
Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\ ...
随机推荐
- (zz)Linux下Gcc生成和使用静态库和动态库详解
http://blog.chinaunix.net/uid-23592843-id-223539.html
- ie条件注释还能这样写
通过条件注释给html开始标签定义不同的class, 来区分不同版本的IE,可以在样式表中避免 样式属性hack (如 _margin-top, *float:none ) 注意: IE10+不支持条 ...
- [WPF疑难]如何禁用窗口上的关闭按钮
原文 [WPF疑难]如何禁用窗口上的关闭按钮 [WPF疑难]如何禁用窗口上的关闭按钮 周银辉 哈哈,主要是调用Rem ...
- Vijos P1740聪明的质检员
题目 描述 小 T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有n个矿石,从1到n逐一编号,每个矿石都有自己的重量wi以及价值vi.检验矿产的流程是:1.给定m个区间[Li,Ri]:2. ...
- (3)选择元素——(4)css选择器(CSS selectors)
The jQuery library supports nearly all of the selectors included in CSS specifications 1 through 3, ...
- Object 保存到文件中
6月4日 Object 保存到文件中 Q. 你添加一个新类到你的项目当中且你希望可以保存这个类的一个实例对象到磁盘文件 并在需要时从磁盘文件读回到内存中 A. 方案 确保你的类遵循 NSCodi ...
- Eclipse快捷键 10个最有用的快捷键(转载)
现在很多开发人员都在用eclipse.用开发工具,就是为了方便,方便你开发你的软件,方便你管理你的工程,而开发工具提供各种功能大部分会有对应的快捷键,下面就列出了eclipse的快捷键. Ecli ...
- [Swust OJ 465]--吴奶奶买鱼(0-1背包+dfs)
题目链接:http://acm.swust.edu.cn/problem/465/ 还有一道题只是描述不一样,方法一模一样(http://acm.swust.edu.cn/problem/644/) ...
- goahead cgi 及出现的问题解决
1. route.txt 配置cgi路径 route uri=/cgi-bin dir=/web handler=cgi 2.交叉编译生成cgi goahead 源码路径下 ./test/c ...
- ListView判断滑动底部
通过实现OnScrollListener这个接口,然后复写 public abstract void onScroll (AbsListView view, int firstVisibleItem, ...