Dijkstra算法(迪杰斯塔拉算法)
算法描述:
Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。
Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。
其基本思想是,设置顶点集合S并不断地作贪心选择来扩充这个集合。一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。初始时,S中仅含有源。设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组dist作必要的修改。一旦S包含了所有V中顶点,dist就记录了从源到所有其它顶点之间的最短路径长度。
代码实现:
#include <stdio.h>
#include <stdlib.h>
#define MAXVERTEX 20
#define INF 65535
typedef char VertexType;
typedef int EdgeType;
typedef int Pathmatirx[MAXVERTEX];
typedef int ShortPathTable[MAXVERTEX];
typedef struct MGraph
{
VertexType vertex[MAXVERTEX];
EdgeType edge[MAXVERTEX][MAXVERTEX];
int numvex;
int numedge;
}MGraph; void CreateMGraph(MGraph *G)
{
int i = 0,j = 0,k = 0,w = 0;
printf("请输入图中顶点的数目和边的数目,中间用逗号隔开:\n");
scanf("%d,%d",&G->numvex,&G->numedge);
for(i = 0;i < G->numvex;i++)
{
for(j = 0;j < G->numvex;j++)
{
if(i == j)
{
G->edge[i][j] = 0;
}
else
{
G->edge[i][j] = INF;
}
}
}
for(k = 0;k < G->numedge;k++)
{
printf("请输入边vi-vj的边的下标 i 和 j ,以及权重w :\n");
scanf("%d,%d,%d",&i,&j,&w);
G->edge[i][j] = w;
G->edge[j][i] = G->edge[i][j];
}
printf("\n");
for(i = 0;i < G->numvex;i++)
{
for(j = 0;j < G->numvex;j++)
{
printf("%d ",G->edge[i][j]);
}
printf("\n");
}
} //Dijkstra算法实现 void ShortestPathByDijkstra(MGraph *G,int v0,Pathmatirx *P,ShortPathTable *D)
{
int i,j,k,w,min;
int final[MAXVERTEX]; for(i = 0;i < G->numvex;i++)
{
final[i] = 0;
(*D)[i] = G->edge[v0][i];
(*P)[i] = 0;
}
final[v0] = 1;
(*D)[v0] = 0;
for(i = 1;i <G->numvex;i++)
{
min = INF;
for(j = 0;j < G->numvex; j++)
{
if(final[j] == 0 && min > (*D)[j])
{
min = (*D)[j];
k = j;
}
} final[k] = 1;
for(w = 0;w < G->numvex;w++)
{
if(final[w] == 0 &&(min + G->edge[k][w] < (*D)[w]))
{
(*D)[w] = min + G->edge[k][w];
(*P)[w] = k;
}
}
}
for(i = 0;i < G->numvex;i++)
{
printf("%d",(*P)[i]);
}
} int main()
{
int k = 0;
struct MGraph G;
Pathmatirx P;
ShortPathTable D;
CreateMGraph(&G);
printf("Dijkstra算法求得的V0到V*的最短路径为:\n");
ShortestPathByDijkstra(&G,k,&P,&D);
return 0;
}
Dijkstra算法(迪杰斯塔拉算法)的更多相关文章
- 单源最短路径算法——Dijkstra算法(迪杰斯特拉算法)
一 综述 Dijkstra算法(迪杰斯特拉算法)主要是用于求解有向图中单源最短路径问题.其本质是基于贪心策略的(具体见下文).其基本原理如下: (1)初始化:集合vertex_set初始为{sourc ...
- Dijkstra【迪杰斯特拉算法】
有关最短路径的最后一个算法——Dijkstra 迪杰斯特拉算法是由荷兰计算机科学家迪杰斯特拉于1959 年提出的,因此又叫迪杰斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路 ...
- 算法-迪杰斯特拉算法(dijkstra)-最短路径
迪杰斯特拉算法(dijkstra)-最短路径 简介: 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中 ...
- 图(最短路径算法————迪杰斯特拉算法和弗洛伊德算法).RP
文转:http://blog.csdn.net/zxq2574043697/article/details/9451887 一: 最短路径算法 1. 迪杰斯特拉算法 2. 弗洛伊德算法 二: 1. 迪 ...
- 全局路径规划算法Dijkstra(迪杰斯特拉算法)- matlab
参考博客链接:https://www.cnblogs.com/kex1n/p/4178782.html Dijkstra是常用的全局路径规划算法,其本质上是一个最短路径寻优算法.算法的详细介绍参考上述 ...
- [链接]最短路径的几种算法[迪杰斯特拉算法][Floyd算法]
最短路径—Dijkstra算法和Floyd算法 http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html Dijkstra算 ...
- floyd算法&迪杰斯特拉算法
; k<=n; k++) ; i<=n; i++) ; j<=n; j++) { gra[i][j]=min(gra[i][j],gra[i][k]+gra[k][j]); } vo ...
- 数据结构之---C语言实现最短路径之Dijkstra(迪杰斯特拉)算法
此处共同拥有两段代码: 一. 这段代码比較全面,当中參考了github上的相关源代码. 能够说功能强大. //Dijkstra(迪杰斯特拉算法) #include <stdio.h> #i ...
- Java 迪杰斯特拉算法实现查找最短距离
迪杰斯特拉算法 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是 ...
随机推荐
- linux 系统下java开发环境的配置
在安装之前,确保你的linux系统下有 jdk,jboss等相关软件 一.配置JDK环境变量 步骤: 解压缩JDK文件: unzip jdk1.6.0_31.zip 目录下显示文件夹jdk1.6.0_ ...
- c++设计模式之策略模式
概念:通过定义一系列封装的算法,使得调度者可以互相替换,此模式让算法的变化,不会影响到使用算法的客户. 特点: 1)根据不同的情况创建不同的对象. 2)每个对象的方法名相同,但实现却不同. 结构: 1 ...
- Qt调用外部程序QProcess通信
mainwindow.cpp文件: -------------------------------- #include "mainwindow.h" #include " ...
- HTML5简单入门系列(四)
前言 今天这篇内容主要讲述HTML 5 Web Worker(一种支持前端js多线程的技术). 工作线程(Web Worker) web worker介绍 W3C 在 HTML5 的规范中提出了工作线 ...
- android启动activity文本框不获得焦点
在开发中,常常会碰到这种情况,打开一个activity后,第一个文本框自动获得焦点,同时会弹出软键盘输入框,这样很影响用户体验,现在来看解决方法. 我们先来看看为什么会出现上述情况,原因很简单,文本框 ...
- mysql之6备份恢复
基本意义: 将数据另存到其他设备,以便于出现问题时恢复数据 为什么要备份: 灾难恢复:需求改变:测试 几个事先需要考虑的问题: 可以容忍丢失多长时间的数据?恢复要在多长时间内完成?是否 ...
- invesments 第三章 上
1. How firms issue securities: 公司如何发行股票 A. primary market: 新的股票,债券和其他的证券第一次发行的market B. ...
- PHP代码,拒绝频繁访问
一个网站性能有限,如果有人恶意去频繁对页面进行刷新,其实对服务器影响是很大的,导致资源使用非常高,直接影响到其他用户的体验. 那么对于这样的一些频繁访问,我们该如何去拒绝它呢? 我总结了两种方法:第一 ...
- Pattern | CLiPS
Pattern | CLiPS Pattern Pattern is a web mining module for the Python programming language. It has t ...
- HOWTO Use Python in the web — Python v3.0.1 documentation
HOWTO Use Python in the web - Python v3.0.1 documentation mod_python¶ People coming from PHP often f ...