这一周的作业,刚压线写完。Problem3 没有写,不想证明了。从Problem 9 开始一直到最后难度都挺大的,我是在论坛上看过了别人的讨论才写出来的,挣扎了很久。

Problem 9在给定的基上分解向量,里面调用了hw4的一些函数,通过solve函数获得矩阵方程的解

Problem 10判断矩阵是不是可逆的,注意判断矩阵是不是square的

Problem 11和Problem 12 都是求逆,也是解方程,只是函数的参数需要参考一下源码

发现一个有趣的事情,Coding the Matrix的论坛上有个老头胡子都白了也在学这个课程,好励志的感觉,不过人家貌似是教授来着。

# version code 941
# Please fill out this stencil and submit using the provided submission script. from vecutil import list2vec
from solver import solve
from matutil import *
from mat import Mat
from GF2 import one
from vec import Vec
from independence import *
from triangular import *
from hw4 import * ## Problem 1
w0 = list2vec([1,0,0])
w1 = list2vec([0,1,0])
w2 = list2vec([0,0,1]) v0 = list2vec([1,2,3])
v1 = list2vec([1,3,3])
v2 = list2vec([0,3,3]) # Fill in exchange_S1 and exchange_S2
# with appropriate lists of 3 vectors exchange_S0 = [w0,w1,w2]
exchange_S1 = [v0,w1,w2]
exchange_S2 = [v0,v1,w2]
exchange_S3 = [v0,v1,v2] ## Problem 2
w0 = list2vec([0,one,0])
w1 = list2vec([0,0,one])
w2 = list2vec([one,one,one]) v0 = list2vec([one,0,one])
v1 = list2vec([one,0,0])
v2 = list2vec([one,one,0]) exchange_2_S0 = [w0, w1, w2]
exchange_2_S1 = [w0,w1,v1]
exchange_2_S2 = [w0,v0,v1]
exchange_2_S3 = [v0, v1, v2] ## Problem 3
def morph(S, B):
'''
Input:
- S: a list of distinct Vec instances
- B: a list of linearly independent Vec instances
- Span S == Span B
Output: a list of pairs of vectors to inject and eject
Example:
>>> #This is how our morph works. Yours may yield different results.
>>> S = [list2vec(v) for v in [[1,0,0],[0,1,0],[0,0,1]]]
>>> B = [list2vec(v) for v in [[1,1,0],[0,1,1],[1,0,1]]]
>>> morph(S, B)
[(Vec({0, 1, 2},{0: 1, 1: 1, 2: 0}), Vec({0, 1, 2},{0: 1, 1: 0, 2: 0})), (Vec({0, 1, 2},{0: 0, 1: 1, 2: 1}), Vec({0, 1, 2},{0: 0, 1: 1, 2: 0})), (Vec({0, 1, 2},{0: 1, 1: 0, 2: 1}), Vec({0, 1, 2},{0: 0, 1: 0, 2: 1}))] '''
pass ## Problem 4
# Please express each solution as a list of vectors (Vec instances) row_space_1 = [list2vec([1,2,0]),list2vec([0,2,1])]
col_space_1 = [list2vec([1,0]),list2vec([0,1])] row_space_2 = [list2vec([1,4,0,0]),list2vec([0,2,2,0]),list2vec([0,0,1,1])]
col_space_2 = [list2vec([1,0,0]),list2vec([4,2,0]),list2vec([0,0,1])] row_space_3 = [list2vec([1])]
col_space_3 = [list2vec([1,2,3])] row_space_4 = [list2vec([1,0]),list2vec([2,1])]
col_space_4 = [list2vec([1,2,3]),list2vec([0,1,4])] ## Problem 5
def my_is_independent(L):
'''
input: A list, L, of Vecs
output: A boolean indicating if the list is linearly independent >>> L = [Vec({0, 1, 2},{0: 1, 1: 0, 2: 0}), Vec({0, 1, 2},{0: 0, 1: 1, 2: 0}), Vec({0, 1, 2},{0: 0, 1: 0, 2: 1}), Vec({0, 1, 2},{0: 1, 1: 1, 2: 1}), Vec({0, 1, 2},{0: 1, 1: 1, 2: 0}), Vec({0, 1, 2},{0: 0, 1: 1, 2: 1})]
>>> my_is_independent(L)
False
>>> my_is_independent(L[:2])
True
>>> my_is_independent(L[:3])
True
>>> my_is_independent(L[1:4])
True
>>> my_is_independent(L[0:4])
False
>>> my_is_independent(L[2:])
False
>>> my_is_independent(L[2:5])
False
'''
if rank(L)==len(L):return True
else:return False ## Problem 6
def subset_basis(T):
'''
input: A list, T, of Vecs
output: A list, S, containing Vecs from T, that is a basis for the
space spanned by T. >>> a0 = Vec({'a','b','c','d'}, {'a':1})
>>> a1 = Vec({'a','b','c','d'}, {'b':1})
>>> a2 = Vec({'a','b','c','d'}, {'c':1})
>>> a3 = Vec({'a','b','c','d'}, {'a':1,'c':3})
>>> subset_basis([a0,a1,a2,a3]) == [Vec({'c', 'b', 'a', 'd'},{'a': 1}), Vec({'c', 'b', 'a', 'd'},{'b': 1}), Vec({'c', 'b', 'a', 'd'},{'c': 1})]
True
'''
r=[]
for x in T:
r.append(x)
#print(x)
if my_is_independent(r)==False:r.remove(x)
#print(r)
return r ## Problem 7
def my_rank(L):
'''
input: A list, L, of Vecs
output: The rank of the list of Vecs >>> my_rank([list2vec(v) for v in [[1,2,3],[4,5,6],[1.1,1.1,1.1]]])
2
'''
return len(subset_basis(L)) ## Problem 8
# Please give each answer as a boolean only_share_the_zero_vector_1 = True
only_share_the_zero_vector_2 = True
only_share_the_zero_vector_3 = True ## Problem 9
def direct_sum_decompose(U_basis, V_basis, w):
'''
input: A list of Vecs, U_basis, containing a basis for a vector space, U.
A list of Vecs, V_basis, containing a basis for a vector space, V.
A Vec, w, that belongs to the direct sum of these spaces.
output: A pair, (u, v), such that u+v=w and u is an element of U and
v is an element of V. >>> U_basis = [Vec({0, 1, 2, 3, 4, 5},{0: 2, 1: 1, 2: 0, 3: 0, 4: 6, 5: 0}), Vec({0, 1, 2, 3, 4, 5},{0: 11, 1: 5, 2: 0, 3: 0, 4: 1, 5: 0}), Vec({0, 1, 2, 3, 4, 5},{0: 3, 1: 1.5, 2: 0, 3: 0, 4: 7.5, 5: 0})]
>>> V_basis = [Vec({0, 1, 2, 3, 4, 5},{0: 0, 1: 0, 2: 7, 3: 0, 4: 0, 5: 1}), Vec({0, 1, 2, 3, 4, 5},{0: 0, 1: 0, 2: 15, 3: 0, 4: 0, 5: 2})]
>>> w = Vec({0, 1, 2, 3, 4, 5},{0: 2, 1: 5, 2: 0, 3: 0, 4: 1, 5: 0})
>>> direct_sum_decompose(U_basis, V_basis, w) == (Vec({0, 1, 2, 3, 4, 5},{0: 2.0, 1: 4.999999999999972, 2: 0.0, 3: 0.0, 4: 1.0, 5: 0.0}), Vec({0, 1, 2, 3, 4, 5},{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0, 5: 0.0}))
True
'''
T=U_basis + V_basis
x=vec2rep(T,w)
#print(T,w,x)
rep=list(x.f.values())
u1=list2vec(rep[0:len(U_basis)])
v1=list2vec(rep[len(U_basis):len(T)])
u=rep2vec(u1,U_basis)
v=rep2vec(v1,V_basis)
return (u,v) ## Problem 10
def is_invertible(M):
'''
input: A matrix, M
outpit: A boolean indicating if M is invertible. >>> M = Mat(({0, 1, 2, 3}, {0, 1, 2, 3}), {(0, 1): 0, (1, 2): 1, (3, 2): 0, (0, 0): 1, (3, 3): 4, (3, 0): 0, (3, 1): 0, (1, 1): 2, (2, 1): 0, (0, 2): 1, (2, 0): 0, (1, 3): 0, (2, 3): 1, (2, 2): 3, (1, 0): 0, (0, 3): 0})
>>> is_invertible(M)
True
'''
L=mat2coldict(M)
L=list(L.values())
if len(L)!=len(L[0].D):return False
else:return rank(L)==len(L) ## Problem 11
def find_matrix_inverse(A):
'''
input: An invertible matrix, A, over GF(2)
output: Inverse of A >>> M = Mat(({0, 1, 2}, {0, 1, 2}), {(0, 1): one, (1, 2): 0, (0, 0): 0, (2, 0): 0, (1, 0): one, (2, 2): one, (0, 2): 0, (2, 1): 0, (1, 1): 0})
>>> find_matrix_inverse(M) == Mat(({0, 1, 2}, {0, 1, 2}), {(0, 1): one, (2, 0): 0, (0, 0): 0, (2, 2): one, (1, 0): one, (1, 2): 0, (1, 1): 0, (2, 1): 0, (0, 2): 0})
True
'''
B=[]
for i in range(len(A.D[0])):
b=Vec(A.D[0],{})
b[i]=one
t=solve(A,b)
B.append(t)
B=coldict2mat(B)
return B ## Problem 12
def find_triangular_matrix_inverse(A):
'''
input: An upper triangular Mat, A, with nonzero diagonal elements
output: Inverse of A
>>> A = listlist2mat([[1, .5, .2, 4],[0, 1, .3, .9],[0,0,1,.1],[0,0,0,1]])
>>> find_triangular_matrix_inverse(A) == Mat(({0, 1, 2, 3}, {0, 1, 2, 3}), {(0, 1): -0.5, (1, 2): -0.3, (3, 2): 0.0, (0, 0): 1.0, (3, 3): 1.0, (3, 0): 0.0, (3, 1): 0.0, (2, 1): 0.0, (0, 2): -0.05000000000000002, (2, 0): 0.0, (1, 3): -0.87, (2, 3): -0.1, (2, 2): 1.0, (1, 0): 0.0, (0, 3): -3.545, (1, 1): 1.0})
True
'''
B=[]
C=mat2rowdict(A)
for i in range(len(A.D[0])):
b=Vec(A.D[0],{})
b[i]=1
t=triangular_solve(C,range(len(C)),b)
B.append(t)
B=coldict2mat(B)
return B

【Python】Coding the Matrix:Week 5: Dimension Homework 5的更多相关文章

  1. 【Python】Coding the Matrix:Week 5 Perspective Lab

    这个Lab的内容光是说明就有7页之巨,我反复看了很久才看懂一点点,Lab主要完成的是从不同坐标系表示之间变换的方法. 原始的图片,从Camera basis的表示转换成WhiteBoard basis ...

  2. 【python】SQLAlchemy

    来源:廖雪峰 对比:[python]在python中调用mysql 注意连接数据库方式和数据操作方式! 今天发现了个处理数据库的好东西:SQLAlchemy 一般python处理mysql之类的数据库 ...

  3. 【Python】内置数据类型

    参考资料: http://sebug.net/paper/books/dive-into-python3/native-datatypes.html http://blog.csdn.net/hazi ...

  4. 【Python】 零碎知识积累 II

    [Python] 零碎知识积累 II ■ 函数的参数默认值在函数定义时确定并保存在内存中,调用函数时不会在内存中新开辟一块空间然后用参数默认值重新赋值,而是单纯地引用这个参数原来的地址.这就带来了一个 ...

  5. 【Python】【BugList12】python自带IDLE执行print(req.text)报错:UnicodeEncodeError: 'UCS-2' codec can't encode characters in position 93204-93204

    [代码] # -*- coding:UTF-8 -*- import requests if __name__ == '__main__': target = 'https://unsplash.co ...

  6. 【Python】【内置函数】

    [fromkeys()] -- coding: utf-8 -- python 27 xiaodeng python之函数用法fromkeys() fromkeys() 说明:用于创建一个新字典,以序 ...

  7. 【Python】-NO.98.Note.3.Python -【Python3 解释器、运算符】

    1.0.0 Summary Tittle:[Python]-NO.98.Note.3.Python -[Python3 解释器] Style:Python Series:Python Since:20 ...

  8. 【Python】【容器 | 迭代对象 | 迭代器 | 生成器 | 生成器表达式 | 协程 | 期物 | 任务】

    Python 的 asyncio 类似于 C++ 的 Boost.Asio. 所谓「异步 IO」,就是你发起一个 IO 操作,却不用等它结束,你可以继续做其他事情,当它结束时,你会得到通知. Asyn ...

  9. 【Python】无须numpy,利用map函数与zip(*)函数对数组转置(转)

    http://blog.csdn.net/yongh701/article/details/50283689 在Python的numpy中,对类似array=[[1,2,3],[4,5,6],[7,8 ...

随机推荐

  1. 【转】Android NDK开发入门实例

    写这个,目的就是记录一下我自己的NDK是怎么入门的.便于以后查看,而不会忘了又用搜索引擎一顿乱搜.然后希望能够帮助刚学的人入门. 先转一段别人说的话:“NDK全称:Native Development ...

  2. JQuery DOM 有关代码练习

    //累加你选择的个数 <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <hea ...

  3. IOS 用drawRect 画表格

    自定义一个View DrawLine DrawLine.h #import <UIKit/UIKit.h> @protocol gridTouchDelete <NSObject&g ...

  4. struts——拦截器

    什么是拦截器 拦截器(Interceptor)是Struts 2的一个强有力的工具,有许多功能都是构建于它之上,如国际化(前两篇博客介绍过).转换器,校验等. 拦截器是动态拦截Action调用的对象. ...

  5. What is NetApp's Cluster File System?

    Data ONTAP GX: A Scalable Storage Cluster www.usenix.org/event/fast07/tech/full_papers/eisler/eisler ...

  6. feel倍儿爽

    今天装的360,在卸载就要权限,在自己的电脑卸载360还要权限,真是一物降一物,安装了个牛逼的卸载软件就卸载了

  7. PHP学习笔记十六【方法】

    <?php //给一个函数传递基本数据类型 $a=90; $b=90.8; $c=true; $d="hello world"; function test1($a,$b,$ ...

  8. shell参数

    shell获取当前执行脚本的路径 filepath=$(cd "$(dirname "$0")"; pwd) 脚本文件的绝对路径存在了环境变量filepath中 ...

  9. 从C# String类理解Unicode(UTF8/UTF16)

    上一篇博客:从字节理解Unicode(UTF8/UTF16).这次我将从C# code 中再一次阐述上篇博客的内容. C# 代码看UTF8 代码如下: string test = "UTF- ...

  10. java实例变量及方法调用顺序

    public class Base { private String name="base"; public Base(){ sayHello(); } void sayHello ...