poj 3641 Pseudoprime numbers(快速幂)
Description
Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.) Given < p ≤ and < a < p, determine whether or not p is a base-a pseudoprime.
Input
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.
Output
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
Sample Input
Sample Output
no
no
yes
no
yes
yes
Source
感觉好久没A题了,脑子都快生锈了,所有赶紧做做题。
求(a^p)%p==a,数据大所有用long long
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
#include <stack>
using namespace std;
#define PI acos(-1.0)
#define max(a,b) (a) > (b) ? (a) : (b)
#define min(a,b) (a) < (b) ? (a) : (b)
#define ll long long
#define eps 1e-10
#define N 1000000
#define inf 1e12
ll pow_mod(ll a,ll n,ll MOD)
{
if(n==)
return %MOD;
ll tt=pow_mod(a,n>>,MOD);
ll ans=tt*tt%MOD;
if(n&)
ans=ans*a%MOD;
return ans;
}
int main()
{
ll p,a;
while(scanf("%I64d%I64d",&p,&a)==){
if(p== && a==){
break;
}
int flag=;
for(int i=;i<(int)sqrt(p+0.5);i++){
if(p%i==){
flag=;
break;
}
}
if(flag==){
printf("no\n");
continue;
}
ll ans=pow_mod(a,p,p); //printf("%I64d\n",ans);
if(ans==a){
printf("yes\n");
}else{
printf("no\n");
}
}
return ;
}
poj 3641 Pseudoprime numbers(快速幂)的更多相关文章
- poj 3641 Pseudoprime numbers 快速幂+素数判定 模板题
Pseudoprime numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7954 Accepted: 3305 D ...
- poj 3641 Pseudoprime numbers
题目连接 http://poj.org/problem?id=3641 Pseudoprime numbers Description Fermat's theorem states that for ...
- POJ 3641 Pseudoprime numbers (数论+快速幂)
题目链接:POJ 3641 Description Fermat's theorem states that for any prime number p and for any integer a ...
- POJ3641 Pseudoprime numbers(快速幂+素数判断)
POJ3641 Pseudoprime numbers p是Pseudoprime numbers的条件: p是合数,(p^a)%p=a;所以首先要进行素数判断,再快速幂. 此题是大白P122 Car ...
- poj 3641 Pseudoprime numbers Miller_Rabin测素裸题
题目链接 题意:题目定义了Carmichael Numbers 即 a^p % p = a.并且p不是素数.之后输入p,a问p是否为Carmichael Numbers? 坑点:先是各种RE,因为po ...
- POJ 3641 Pseudoprime numbers (miller-rabin 素数判定)
模板题,直接用 /********************* Template ************************/ #include <set> #include < ...
- HDU 3641 Pseudoprime numbers(快速幂)
Pseudoprime numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11336 Accepted: 4 ...
- POJ 1995:Raising Modulo Numbers 快速幂
Raising Modulo Numbers Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5532 Accepted: ...
- pojPseudoprime numbers (快速幂)
Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a ...
随机推荐
- Summary Ranges 解答
Question Given a sorted integer array without duplicates, return the summary of its ranges. For exam ...
- Binary Tree Level Order Traversal 解答
Question Given a binary tree, return the level order traversal of its nodes' values. (ie, from left ...
- 剑指offer-面试题1:赋值运算符函数
题目:如下为类型CMyString的声明,请为该类型添加赋值运算符函数 class CMyString { public: CMyString(char *pData=NULL); CMyString ...
- Oleg Sych - » Pros and Cons of T4 in Visual Studio 2008
Oleg Sych - » Pros and Cons of T4 in Visual Studio 2008 Pros and Cons of T4 in Visual Studio 2008 Po ...
- mysql的基本使用方法
创建数据库:create database [if not exist]name [character set 编码方式 collate 校对规则] 显示库的创建信息:show create data ...
- wpf实现IE菜单栏自动隐藏效果
IE菜单栏默认为隐藏状态,按下键盘Alt键后显示,菜单失去焦点则自动隐藏.下面说说WPF中如何实现这样的效果. 第一步:Menu默认设置为隐藏(Visibility="Collapsed&q ...
- windows下启动/关闭Sybase数据库服务器
启动.关闭Sybase数据库服务器 一.启动Sybase服务器 在windows下介绍两种方法启动Sybase数据库服务器. 1.通过服务器管理器 依次打开控制面板>管理工具>服务 管理窗 ...
- 实现接口IDisposable的示例
想使用using(...), 如: using (Getter process = new Getter()) { //... } 就必须给类实现接口IDisposable public sealed ...
- js数字验证
1.JS判断只能是数字和小数点 1.文本框只能输入数字代码(小数点也不能输入) <input onkeyup="this.value=this.value.replace(/\D/g, ...
- Matplotlib不显示图形
安装好了Matplotlib,使用官方一个例子测试运行时,发现使用画图功能时,运行脚本老是显示不出图像,Google了一下,后来发现是matplotlibrc文件没配置好. 参考了官方文档,修改步骤如 ...