Description

Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)

Given  < p ≤  and  < a < p, determine whether or not p is a base-a pseudoprime.

Input

Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.

Output

For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".

Sample Input


Sample Output

no
no
yes
no
yes
yes

Source

感觉好久没A题了,脑子都快生锈了,所有赶紧做做题。

求(a^p)%p==a,数据大所有用long long

 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
#include <stack>
using namespace std;
#define PI acos(-1.0)
#define max(a,b) (a) > (b) ? (a) : (b)
#define min(a,b) (a) < (b) ? (a) : (b)
#define ll long long
#define eps 1e-10
#define N 1000000
#define inf 1e12
ll pow_mod(ll a,ll n,ll MOD)
{
if(n==)
return %MOD;
ll tt=pow_mod(a,n>>,MOD);
ll ans=tt*tt%MOD;
if(n&)
ans=ans*a%MOD;
return ans;
}
int main()
{
ll p,a;
while(scanf("%I64d%I64d",&p,&a)==){
if(p== && a==){
break;
}
int flag=;
for(int i=;i<(int)sqrt(p+0.5);i++){
if(p%i==){
flag=;
break;
}
}
if(flag==){
printf("no\n");
continue;
}
ll ans=pow_mod(a,p,p); //printf("%I64d\n",ans);
if(ans==a){
printf("yes\n");
}else{
printf("no\n");
}
}
return ;
}

poj 3641 Pseudoprime numbers(快速幂)的更多相关文章

  1. poj 3641 Pseudoprime numbers 快速幂+素数判定 模板题

    Pseudoprime numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7954 Accepted: 3305 D ...

  2. poj 3641 Pseudoprime numbers

    题目连接 http://poj.org/problem?id=3641 Pseudoprime numbers Description Fermat's theorem states that for ...

  3. POJ 3641 Pseudoprime numbers (数论+快速幂)

    题目链接:POJ 3641 Description Fermat's theorem states that for any prime number p and for any integer a ...

  4. POJ3641 Pseudoprime numbers(快速幂+素数判断)

    POJ3641 Pseudoprime numbers p是Pseudoprime numbers的条件: p是合数,(p^a)%p=a;所以首先要进行素数判断,再快速幂. 此题是大白P122 Car ...

  5. poj 3641 Pseudoprime numbers Miller_Rabin测素裸题

    题目链接 题意:题目定义了Carmichael Numbers 即 a^p % p = a.并且p不是素数.之后输入p,a问p是否为Carmichael Numbers? 坑点:先是各种RE,因为po ...

  6. POJ 3641 Pseudoprime numbers (miller-rabin 素数判定)

    模板题,直接用 /********************* Template ************************/ #include <set> #include < ...

  7. HDU 3641 Pseudoprime numbers(快速幂)

    Pseudoprime numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11336   Accepted: 4 ...

  8. POJ 1995:Raising Modulo Numbers 快速幂

    Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5532   Accepted: ...

  9. pojPseudoprime numbers (快速幂)

    Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a ...

随机推荐

  1. cf471B MUH and Important Things

    B. MUH and Important Things time limit per test 1 second memory limit per test 256 megabytes input s ...

  2. MyCat 介绍、分片规则、调优的内容收集

    一.MyCat的简介 MyCat高可用.负载均衡架构图: 详细知识点:  MySQL分布式集群之MyCAT(一)简介(修正) 二.MyCat的schema.xml讲解 详细知识点:MySQL分布式集群 ...

  3. PHP安装mcrypt.so报错 mcrypt.h not found 的解决办法

    报错内容:configure: error: mcrypt.h not found. Please reinstall libmcrypt 网上搜索了很多,包括自带的 yum install libm ...

  4. Oracle SQL函数之数学函数

    Oracle SQL函数之数学函数 ABS(x) [功能]返回x的绝对值 [参数]x,数字型表达式 [返回]数字 SQL> SELECT ABS(),ABS(-) FROM DUAL; ABS( ...

  5. AC自动机跟随Kuangbing学习笔记

    http://www.cnblogs.com/kuangbin/p/3164106.html kuangbin的博客 第一段代码基本是COPY kuangbin的.. 1.HDU 2222 Keywo ...

  6. 【计算几何初步-凸包-Jarvis步进法。】【HDU1392】Surround the Trees

    [科普]什么是BestCoder?如何参加? Surround the Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  7. VLC-Android和VLC几个关键宏定义的分析

    在用SourceInsight分析VLC-Android源码过程中,有几个宏定义在源代码中一直没有找到出处,比如 HAVE_DYNAMIC_PLUGINS和__PLUGIN__,以及MODULE_NA ...

  8. 《JavaScript 闯关记》之对象

    对象是 JavaScript 的数据类型.它将很多值(原始值或者其他对象)聚合在一起,可通过名字访问这些值,因此我们可以把它看成是从字符串到值的映射.对象是动态的,可以随时新增和删除自有属性.对象除了 ...

  9. MSDTC问题集

    一.链接服务器的 OLE DB 访问接口 "SQLNCLI" 无法启动分布式事务. 尊重原著作:本文转载自http://sfwxw456.blog.163.com/blog/sta ...

  10. NULL & nil & Nil & NSNULL的区别

    nil 是 OC 的,空对象,地址指向 空(0) 的对象 在 OC 中,可以给空对象发送任何消息,不会出现错误 NULL 是 C 的,空地址,地址的数值是 0,是一个长整数 表示地址是空 NSNull ...