1. timestamp

1.1 创建timestamp

  1. 自定义timestamp
  • 语法:pd.Timestamp(ts_input,tz,year,month,day,hour,minute,second,microsecond,nanosecond,tzinfo)
  • 代码示例:
import pandas as pd
import pytz # 当ts_input为字符串时,一般要与tz参数搭配使用
timestamp = pd.Timestamp(ts_input="2023-01-05", tz=pytz.timezone("Asia/Shanghai"))
print(timestamp) # 2023-01-05 00:00:00+08:00
import pandas as pd

# 当ts_input为数值型时,一般要与unit参数搭配使用
timestamp = pd.Timestamp(ts_input=1672909342.246457, unit="s")
print(timestamp) # 2023-01-05 09:02:22.246457100
import pandas as pd

# 当不传ts_input时,一般要指定year,month,day,hour,minute,second等参数
import pandas as pd timestamp = pd.Timestamp(year=2023,month=1,day=5,hour=17,minute=8,second=34)
print(timestamp) # 2023-01-05 17:08:34
  1. 获取当前时间戳
print(pd.Timestamp.now())  # 2023-01-05 17:48:56.629418
print(pd.Timestamp.utcnow()) # 2023-01-05 09:48:56.629418+00:00

1.2 timestamp的常用方法及属性

1.2.1 timestamp常用方法

  • ts.tz_localize(tz)

    功能:将naive时区的timestamp本地化其他时区

    参数:tz: 时区标识符
ts = pd.Timestamp("2022-01-06")
print(ts.tz) # None
ts = ts.tz_localize("Asia/Shanghai") # 本地化为北京时间
print(ts) # 2022-01-06 00:00:00+08:00
print(ts.value) # 1641398400000000000,纳秒级时间戳

1.2.2 timestamp常用属性

  • ts.value(查看纳秒级整型时间戳)
ts = pd.Timestamp("2022-01-06")
print(ts.value) # 1641398400000000000,纳秒级时间戳

1.3 时区及时区转换

1.3.1 时区

在python中时区信息可以在第三方库pytz中进行查看

(1)查看时区

pytz包中可以使用all_timezones和common_timezones这两个属性来查看有哪些时区。

import pytz
print(len(pytz.all_timezones)) # 595
print(pytz.all_timezones[:5]) # ['Africa/Abidjan', 'Africa/Accra', 'Africa/Addis_Ababa', 'Africa/Algiers', 'Africa/Asmara']
import pytz
print(len(pytz.common_timezones)) # 437
print(pytz.common_timezones[:5]) # ['Africa/Abidjan', 'Africa/Accra', 'Africa/Addis_Ababa', 'Africa/Algiers', 'Africa/Asmara']

(2)获取时区对象

pytz包中可以使用pytz.timezone(zone)方法来获取时区对象,zone为时区标识符,如中国上海的时区标识符为"Asia/Shanghai"

import pytz
tz = pytz.timezone('Asia/Shanghai')
tz # <DstTzInfo 'Asia/Shanghai' LMT+8:06:00 STD>

1.3.2 时区转换

(1) utc时区转其他时区(两种方式)
  1. timestamp.astimezone(tz=None) -> Timestamp
  • 代码示例
import pandas as pd

utc_ts = pd.Timestamp("2022-01-05 11:45:14",tz="utc")
print(utc_ts) # 2022-01-05 19:45:14+00:00
beijing_ts = utc_ts.astimezone(tz="Asia/Shanghai")
print(beijing_ts) # 2022-01-05 19:45:14+08:00
  1. timestamp.tz_convert(tz=None) -> Timestamp
  • 代码示例
import pandas as pd

utc_ts = pd.Timestamp("2022-01-05 11:45:14",tz="utc")
print(utc_ts) # 2022-01-05 19:45:14+00:00
beijing_ts = utc_ts.tz_convert(tz="Asia/Shanghai")
print(beijing_ts) # 2022-01-05 19:45:14+08:00
(2) 其他时区转utc时区(同时支持所有时区互转)
  1. pd.DataFrame.tz_localize(tz, axis=0, level=None, copy=True, ambiguous='raise’, nonexistent='raise') -> Series | DataFraem
  • 参数介绍:

    tz: 字符串或pytz.timezone对象

    axis: 定位轴

    level: 如果轴为MultiIndex,则定位特定级别。否则必须为None

    copy: 同时复制基础数据

    ambiguous: 当时钟由于DST而向后移动时,可能会产生不明确的时间

    nonexistent: 在特定时区中不存在不存在的时间,在该特定时区中由于DST而使时钟向前移动
  • 代码示例

    模拟一组时序数据,注意该数据中的时间我们认为是北京时间。我们的目标是把这个时间转成utc时间,并生成时间戳。
import pandas as pd
import numpy as np grade = np.random.uniform(52,100,200).astype(np.int64)
exam_dates = pd.date_range("2023-01-01", periods=200, freq="H") # 北京时间
data = pd.DataFrame(data={"grade":grade})
data["date"] = exam_dates
data.set_index("date",inplace=True)

output:

需要特别注意的一点是:pandas中的时间序列(实质上是Timestamp对象)从时区上来讲有两种,第一种是naive时区的时间序列,即没有时区,时间序列默认的就是这种类型。另一种是time-zone aware类型,即有时区意识的时间序列,这种时间序列(时间戳)对象中保存了一个纳秒级的UTC时间戳,其值在时区转换过程中是不发生改变的。用ts.tz方法可以查看时间序列的时区,用ts.value可以查看时间序列对应的纳秒级时间戳:

print(data.index.tz)  # None,默认没有时区

因此,我们如果想要将这个时间序列转到其他时区,就必须先确定它自己是哪个时区。假设我们认为这个时间序列是北京时间,那我们就必须先赋予给时间序列一个时区信息,即将该时间序列本地化到北京时区。可以使用ts.localize(tz="Asia/Shanghai")方法。

data_bj = data.localize("Asia/Shanghai")
print(data_bj.index.tz) # Asia/Shanghai
print(data_bj)

output:



现在该时间序列就有了时区信息,这样我们就可以将它转到另一个时区,可以使用ts.tz_convert(tz="utc")方法。

data_utc = data_bj.tz_convert(tz="utc")
print(data_utc.index.tz)
data_utc

output:



这样就成功的将北京时间转成utc时间了。但是从上边结果中可以看到,我们转换过来的时间戳是time zone-aware类型的,有'+00:00'的字样。要去掉这个字样,需要将time zone-aware再转为naive类型。

data_utc_naive = data_utc.tz_convert(None)
data_utc_naive

output:

如果我们需要进一步将date转换为数值型的时间戳,可以通过以下两种方式实现:

(1) 通过时间戳定义,用当前时间减去时间戳计算起点"1970-01-01"

data_utc_naive["dtime1"] = (data_utc_naive.index - pd.Timestamp("1970-01-01")) // pd.Timedelta('1ms')  # utc时间转毫秒级时间戳
data_utc_naive

output:

(2) Series的values有一个视图函数view(dtype),我们可以使用该方法去查看Timestamp对象的数值型形式

# 由于视图函数转换过来的时间戳是纳秒级的,我们需要自己去除以一个进制转成我们需要的精度。
# 秒级以下的时间换算关系如下:1s=1000ms=1000us=1000ns
data_utc_naive["dtime2"] = data_utc_naive.index.values.view(dtype=np.int64) // 1000_000
data_utc_naive

output:

【python-数据分析】pandas时间序列处理的更多相关文章

  1. Python数据分析--Pandas知识点(三)

    本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) Python数据分析--Pandas知识点(二) 下面将是在知识点一, ...

  2. Python数据分析--Pandas知识点(二)

    本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) 下面将是在知识点一的基础上继续总结. 13. 简单计算 新建一个数据表 ...

  3. Python数据分析-Pandas(Series与DataFrame)

    Pandas介绍: pandas是一个强大的Python数据分析的工具包,是基于NumPy构建的. Pandas的主要功能: 1)具备对其功能的数据结构DataFrame.Series 2)集成时间序 ...

  4. python 数据分析--pandas

    接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析 ...

  5. Python数据分析Pandas库方法简介

    Pandas 入门 Pandas简介 背景:pandas是一个Python包,提供快速,灵活和富有表现力的数据结构,旨在使“关系”或“标记”数据的使用既简单又直观.它旨在成为在Python中进行实际, ...

  6. Python数据分析 Pandas模块 基础数据结构与简介(一)

    pandas 入门 简介 pandas 组成 = 数据面板 + 数据分析工具 poandas 把数组分为3类 一维矩阵:Series 把ndarray强大在可以存储任意数据类型可以专门处理时间数据 二 ...

  7. Python数据分析 之时间序列基础

    1. 时间序列基础 import numpy as np import pandas as pd np.random.seed(12345) import matplotlib.pyplot as p ...

  8. Python数据分析Pandas库之熊猫(10分钟二)

    pandas 10分钟教程(二) 重点发法 分组 groupby('列名') groupby(['列名1','列名2',.........]) 分组的步骤 (Splitting) 按照一些规则将数据分 ...

  9. Python数据分析Pandas库之熊猫(10分钟一)

    pandas熊猫10分钟教程 排序 df.sort_index(axis=0/1,ascending=False/True) df.sort_values(by='列名') import numpy ...

  10. Python数据分析Pandas库数据结构(一)

    pandas数据结构 1.生成一维矩阵模拟数据 import pandas as pdimport numpy as nps = pd.Series([1,2,3,4,np.nan,9,9])s2 = ...

随机推荐

  1. (二).NET6.0使用Filter过滤器

    1.创建一个webapi方法 2.创建过滤器,继承自Attribute, IAsyncActionFilter 不存在需要先手动引用有关的包:Microsoft.AspNetCore.Mvc 继承 A ...

  2. Mongodb 基础与安装

    官网链接:https://docs.mongodb.com/ 参考链接:https://www.runoob.com/mongodb/mongodb-linux-install.html 1.什么是M ...

  3. MySQL-进阶篇

    一.连接查询 图解示意图 1.建表语句 部门和员工关系表: CREATE TABLE `tb_dept` ( `id` int(11) NOT NULL AUTO_INCREMENT COMMENT ...

  4. 单点登录-OAuth2

    单点登录的实现原理 单点登录在现在的系统架构中广泛存在,他将多个子系统的认证体系打通,实现了一个入口多处使用,而在架构单点登录时,也会遇到一些小问题,在不同的应用环境中可以采用不同的单点登录实现方案来 ...

  5. 第七章 LinkedBlockingQueue源码解析

    1.对于LinkedBlockingQueue需要掌握以下几点 创建 入队(添加元素) 出队(删除元素) 2.创建 Node节点内部类与LinkedBlockingQueue的一些属性 static ...

  6. weixueyuan-Nginx日志管理与监控8

    https://www.weixueyuan.net/nginx/log/ Nginx访问日志配置 Nginx 的访问日志主要记录用户客户端的请求信息(见下表).用户的每次请求都会记录在访问日志中,a ...

  7. typedef的最新理解

    1.typedef的常规用法 typedef unsigned int  UNIT; UINT b; 需要注意的地方有下面几点: ①define 前面替代后面, typedef后面替代前面,这个不要记 ...

  8. webrtc-streamer实时播放监控

    公司要做web端监控实时播放,经过调研,webrtc-streamer的方式对前后端项目侵入最少,且没有延迟卡钝的现象. 一.准备工作 一个摄像头,摄像头对应的rtsp流链接,一台电脑,一个vue项目 ...

  9. SSH 跳板机原理与配置:实现无缝跳板连接,一步直达目标主机

    前言 在日常运维或开发工作中,我们常常需要访问部署在内网的服务器.然而出于安全策略或网络拓扑的限制,内网服务器并不会直接向外部暴露端口,导致我们无法"直连"它们.此时,跳板机(Ju ...

  10. 找不到 MSVCP60D.dll

    问题 VC++ 运行程序时,出现错误: 解决办法 参考:链接 1.下载MSVCP60D.dll,下载:链接 下载的文件为64位,故应将文件复制到:C:\Windows\SysWOW64目录 2.打开& ...