用 16G 内存存放 30亿数据(Java Map)转载
在讨论怎么去重,提出用 direct buffer 建 btree,想到应该有现成方案,于是找到一个好东西:
MapDB - MapDB : http://www.mapdb.org/
以下来自:kotek.net : http://kotek.net/blog/3G_map
3 billion items in Java Map with 16 GB RAM
One rainy evening I meditated about memory managment in Java and how effectively Java collections utilise memory. I made simple experiment, how much entries can I insert into Java Map with 16 GB of RAM?
Goal of this experiment is to investigate internal overhead of collections. So I decided to use small keys and small values. All tests were made on Linux 64bit Kubuntu 12.04. JVM was 64bit Oracle Java 1.7.0_09-b05
with HotSpot 23.5-b02
. There is option to use compressed pointers (-XX:+UseCompressedOops), which is on by default on this JVM.
First is naive test with java.util.TreeMap
. It inserts number into map, until it runs out of memory and ends with exception. JVM settings for this test was -Xmx15G
import java.util.*;
Map m = new TreeMap();
for(long counter=0;;counter++){
m.put(counter,"");
if(counter%1000000==0) System.out.println(""+counter);
}
This example ended at 172 milion entries. Near the end insertion rate slowed down thanks to excesive GC activity. On second run I replaced TreeMap
with `HashMap, it ended at 182 milions.
Java default collections are not most memory efficient option. So lets try an memory-optimized . I choosed LongHashMap
from MapDB, which uses primitive long keys and is optimized to have small memory footprint. JVM settings is again -Xmx15G
import org.mapdb.*
LongMap m = new LongHashMap();
for(long counter=0;;counter++){
m.put(counter,"");
if(counter%1000000==0) System.out.println(""+counter);
}
This time counter stopped at 276 million entries. Again near the end insertion rate slowed down thanks to excesive GC activity.
It looks like this is limit for heap-based collections, Garbage Collection simply brings overhead.
Now is time to pull out the big gun :-). We can always go of-heap where GC can not see our data. Let me introduce you to MapDB, it provides concurrent TreeMap and HashMap backed by database engine. It supports various storage modes, one of them is off-heap memory. (disclaimer: I am MapDB author).
So lets run previous example, but now with off-heap Map. First are few lines to configure and open database, it opens direct-memory store with transactions disabled. Next line creates new Map within the db.
import org.mapdb.*
DB db = DBMaker
.newDirectMemoryDB()
.transactionDisable()
.make();
Map m = db.getTreeMap("test");
for(long counter=0;;counter++){
m.put(counter,"");
if(counter%1000000==0) System.out.println(""+counter);
}
This is off-heap Map, so we need different JVM settings: -XX:MaxDirectMemorySize=15G -Xmx128M
. This test runs out of memory at 980 million records.
But MapDB can do better. Problem in previous sample is record fragmentation, b-tree node changes its size on each insert. Workaround is to hold b-tree nodes in cache for short moment before they are inserted. This reduces the record fragmentation to minimum. So lets change DB configuration:
DB db = DBMaker
.newDirectMemoryDB()
.transactionDisable()
.asyncFlushDelay(100)
.make();
Map m = db.getTreeMap("test");
This records runs out of memory with 1 738 million records. Speed is just amazing 1.7 bilion items are inserted within 31 minutes.
MapDB can do even better. Lets increase b-tree node size from 32 to 120 entries and enable transparent compression:
DB db = DBMaker
.newDirectMemoryDB()
.transactionDisable()
.asyncFlushDelay(100)
.compressionEnable()
.make();
Map m = db.createTreeMap("test",120, false, null, null, null);
This example runs out of memory at whipping 3 315 million records. It is slower thanks to compression, but it still finishes within a few hours. I could probably make some optimization (custom serializers etc) and push number of entries to somewhere around 4 billions.
Maybe you wander how all those entries can fit there. Answer is delta-key compression. Also inserting incremental key (already ordered) into B-Tree is best-case scenario and MapDB is slightly optimized for it. Worst case scenario is inserting keys at random order:
UPDATE added latter: there was bit confusion about compression. Delta-key compression is active by default on all examples. In this example I activated aditional zlib style compression.
DB db = DBMaker
.newDirectMemoryDB()
.transactionDisable()
.asyncFlushDelay(100)
.make();
Map m = db.getTreeMap("test");
Random r = new Random();
for(long counter=0;;counter++){
m.put(r.nextLong(),"");
if(counter%1000000==0) System.out.println(""+counter);
}
But even with random order MapDB handles to store 651 million records, nearly 4 times more then heap-based collections.
This little excersice does not have much purpose. It is just one of many I do to optimize MapDB. Perhaps most amazing is that insertion speed was actually wery good and MapDB can compete with memory based collections.
用 16G 内存存放 30亿数据(Java Map)转载的更多相关文章
- 大数据计算:如何仅用1.5KB内存为十亿对象计数
大数据计算:如何仅用1.5KB内存为十亿对象计数 Big Data Counting: How To Count A Billion Distinct Objects Using Only 1.5K ...
- Java内存区域-- 运行时数据区域
jvm在执行Java程序时,会把它所管理的内存划分为若干个不同的数据区.这些区域都有各自的用途,以及创建和销毁的时间. 有的区域随着虚拟机进程的启动而存在,有些区域则依赖用户线程的启动和结束而建立和销 ...
- Java使用极小的内存完成对超大数据的去重计数,用于实时计算中统计UV
Java使用极小的内存完成对超大数据的去重计数,用于实时计算中统计UV – lxw的大数据田地 http://lxw1234.com/archives/2015/09/516.htm Java使用极小 ...
- java内存结构(执行时数据区域)
java虚拟机规范规定的java虚拟机内存事实上就是java虚拟机执行时数据区,其架构例如以下: 当中方法区和堆是由全部线程共享的数据区. Java虚拟机栈.本地方法栈和程序计数器是线程隔离的数据区. ...
- java内存区域----运行时数据区
Java虚拟机的内存区域也叫做java运行时数据区,共分为五个部分:程序计数器,方法区,本地方法栈,虚拟机栈和堆.方法区和堆是线程之间所共有的,程序计数器,本地方法栈,虚拟机栈是线程私有的.其中虚拟机 ...
- 给定a、b两个文件,各存放50亿个url,每个url各占用64字节,内存限制是4G,如何找出a、b文件共同的url?
给定a.b两个文件,各存放50亿个url,每个url各占用64字节,内存限制是4G,如何找出a.b文件共同的url? 可以估计每个文件的大小为5G*64=300G,远大于4G.所以不可能将其完全加载到 ...
- 从SQL Server到MySQL,近百亿数据量迁移实战
从SQL Server到MySQL,近百亿数据量迁移实战 狄敬超(3D) 2018-05-29 10:52:48 212 沪江成立于 2001 年,作为较早期的教育学习网站,当时技术选型范围并不大:J ...
- Redis基本使用及百亿数据量中的使用技巧分享(附视频地址及观看指南)
作者:依乐祝 原文地址:https://www.cnblogs.com/yilezhu/p/9941208.html 主讲人:大石头 时间:2018-11-10 晚上20:00 地点:钉钉群(组织代码 ...
- Java内存管理-你真的理解Java中的数据类型吗(十)
勿在流沙筑高台,出来混迟早要还的. 做一个积极的人 编码.改bug.提升自己 我有一个乐园,面向编程,春暖花开! 作为Java程序员,Java 的数据类型这个是一定要知道的! 但是不管是那种数据类型最 ...
- JVM 内存区域 (运行时数据区域)
JVM 内存区域 (运行时数据区域) 链接:https://www.jianshu.com/p/ec479baf4d06 运行时数据区域 Java 虚拟机在执行 Java 程序的过程中会把它所管理的内 ...
随机推荐
- Android Qcom USB Driver学习(七)
最近遇到了USB 插拔后,系统重启的问题,抓取串口log发现如下问题,log中查看trace分析就是空指针造成的panic Unable to handle kernel read from unre ...
- 查找大量时序遥感文件缺失、不连贯的成像日期:Python代码
本文介绍批量下载大量多时相的遥感影像文件后,基于Python语言与每一景遥感影像文件的文件名,对这些已下载的影像文件加以缺失情况的核对,并自动统计.列出未下载影像所对应的时相的方法. 批量下载 ...
- 云原生周刊:Kubernetes v1.30 一瞥 | 2024.3.25
开源项目推荐 Retina Retina 是一个与云无关的开源 Kubernetes 网络可观测平台,它提供了一个用于监控应用程序运行状况.网络运行状况和安全性的集中中心.它为集群网络管理员.集群安全 ...
- [rCore学习笔记 030] 虚拟地址与地址空间
时隔很久,终于忙里偷闲可以搞一搞rCore,上帝啊,保佑我日更吧,我真的很想学会. 导读部分 首先还是要看官方文档. 我决定看一遍然后自己表述一遍(智将). 这里反复提到MMU,就是因为之前学MCU的 ...
- 经验总结之 _DEBUGGER _01 _Invalid coercion null-node{} as xsstring _20210909
经验总结之 _DEBUGGER _01 _Invalid coercion null-node{} as xsstring _20210909 今天喜提一个bug,报错情况如下: 该项目使用的是 sp ...
- Chrome 130 版本新特性& Chrome 130 版本发行说明
Chrome 130 版本新特性& Chrome 130 版本发行说明 一.Chrome 130 版本浏览器更新 1. 新的桌面提示 Chrome 130 引入了一种新的 Toast 样式,用 ...
- html换行的方法
1.使用<br> 1 <html> 2 <body> 3 <p> 4 春眠不觉晓,<br />处处闻啼鸟.<br />夜来风雨声 ...
- RK3568,字符设备框架:管理同主设备号、不同次设备号设备
字符设备框架:管理同主设备号.不同次设备号设备 以下代码针对迅为开发板RK3568,开发板系统是ubuntu20.04, 正文 以下是我写的字符设备框架,实现了管理同主设备号.不同次设备号的功能. 代 ...
- 为政务单位免费提供IP地址https证书—JoySSL
JoySSL作为知名的证书颁发机构(CA),确实为政务单位提供了IP地址HTTPS证书的免费测试证书服务.以下是对此服务的详细介绍: 一.证书类型与特点 证书类型:JoySSL为政务单位提供了专为IP ...
- Java 10大优点—Part4—Java内存模型
本文由 ImportNew - 靳禹 翻译自 zeroturnaround.如需转载本文,请先参见文章末尾处的转载要求. 在忙着参加在爱沙尼亚进行的 TEDx talk 演讲活动以及在比利时举办的一届 ...