在讨论怎么去重,提出用 direct buffer 建 btree,想到应该有现成方案,于是找到一个好东西:

MapDB - MapDB : http://www.mapdb.org/

以下来自:kotek.net : http://kotek.net/blog/3G_map

3 billion items in Java Map with 16 GB RAM

One rainy evening I meditated about memory managment in Java and how effectively Java collections utilise memory. I made simple experiment, how much entries can I insert into Java Map with 16 GB of RAM?

Goal of this experiment is to investigate internal overhead of collections. So I decided to use small keys and small values. All tests were made on Linux 64bit Kubuntu 12.04. JVM was 64bit Oracle Java 1.7.0_09-b05 with HotSpot 23.5-b02. There is option to use compressed pointers (-XX:+UseCompressedOops), which is on by default on this JVM.

First is naive test with java.util.TreeMap. It inserts number into map, until it runs out of memory and ends with exception. JVM settings for this test was -Xmx15G

import java.util.*;
Map m = new TreeMap();
for(long counter=0;;counter++){
m.put(counter,"");
if(counter%1000000==0) System.out.println(""+counter);
}

This example ended at 172 milion entries. Near the end insertion rate slowed down thanks to excesive GC activity. On second run I replaced TreeMap with `HashMap, it ended at 182 milions.

Java default collections are not most memory efficient option. So lets try an memory-optimized . I choosed LongHashMap from MapDB, which uses primitive long keys and is optimized to have small memory footprint. JVM settings is again -Xmx15G

import org.mapdb.*
LongMap m = new LongHashMap();
for(long counter=0;;counter++){
m.put(counter,"");
if(counter%1000000==0) System.out.println(""+counter);
}

This time counter stopped at 276 million entries. Again near the end insertion rate slowed down thanks to excesive GC activity.
It looks like this is limit for heap-based collections, Garbage Collection simply brings overhead.

Now is time to pull out the big gun :-). We can always go of-heap where GC can not see our data. Let me introduce you to MapDB, it provides concurrent TreeMap and HashMap backed by database engine. It supports various storage modes, one of them is off-heap memory. (disclaimer: I am MapDB author).

So lets run previous example, but now with off-heap Map. First are few lines to configure and open database, it opens direct-memory store with transactions disabled. Next line creates new Map within the db.

import org.mapdb.*

DB db = DBMaker
.newDirectMemoryDB()
.transactionDisable()
.make(); Map m = db.getTreeMap("test");
for(long counter=0;;counter++){
m.put(counter,"");
if(counter%1000000==0) System.out.println(""+counter);
}

This is off-heap Map, so we need different JVM settings: -XX:MaxDirectMemorySize=15G -Xmx128M. This test runs out of memory at 980 million records.

But MapDB can do better. Problem in previous sample is record fragmentation, b-tree node changes its size on each insert. Workaround is to hold b-tree nodes in cache for short moment before they are inserted. This reduces the record fragmentation to minimum. So lets change DB configuration:

DB db = DBMaker
.newDirectMemoryDB()
.transactionDisable()
.asyncFlushDelay(100)
.make(); Map m = db.getTreeMap("test");

This records runs out of memory with 1 738 million records. Speed is just amazing 1.7 bilion items are inserted within 31 minutes.

MapDB can do even better. Lets increase b-tree node size from 32 to 120 entries and enable transparent compression:

   DB db = DBMaker
.newDirectMemoryDB()
.transactionDisable()
.asyncFlushDelay(100)
.compressionEnable()
.make(); Map m = db.createTreeMap("test",120, false, null, null, null);

This example runs out of memory at whipping 3 315 million records. It is slower thanks to compression, but it still finishes within a few hours. I could probably make some optimization (custom serializers etc) and push number of entries to somewhere around 4 billions.

Maybe you wander how all those entries can fit there. Answer is delta-key compression. Also inserting incremental key (already ordered) into B-Tree is best-case scenario and MapDB is slightly optimized for it. Worst case scenario is inserting keys at random order:

UPDATE added latter: there was bit confusion about compression. Delta-key compression is active by default on all examples. In this example I activated aditional zlib style compression.

    DB db = DBMaker
.newDirectMemoryDB()
.transactionDisable()
.asyncFlushDelay(100)
.make(); Map m = db.getTreeMap("test"); Random r = new Random();
for(long counter=0;;counter++){
m.put(r.nextLong(),"");
if(counter%1000000==0) System.out.println(""+counter);
}

But even with random order MapDB handles to store 651 million records, nearly 4 times more then heap-based collections.

This little excersice does not have much purpose. It is just one of many I do to optimize MapDB. Perhaps most amazing is that insertion speed was actually wery good and MapDB can compete with memory based collections.

用 16G 内存存放 30亿数据(Java Map)转载的更多相关文章

  1. 大数据计算:如何仅用1.5KB内存为十亿对象计数

    大数据计算:如何仅用1.5KB内存为十亿对象计数  Big Data Counting: How To Count A Billion Distinct Objects Using Only 1.5K ...

  2. Java内存区域-- 运行时数据区域

    jvm在执行Java程序时,会把它所管理的内存划分为若干个不同的数据区.这些区域都有各自的用途,以及创建和销毁的时间. 有的区域随着虚拟机进程的启动而存在,有些区域则依赖用户线程的启动和结束而建立和销 ...

  3. Java使用极小的内存完成对超大数据的去重计数,用于实时计算中统计UV

    Java使用极小的内存完成对超大数据的去重计数,用于实时计算中统计UV – lxw的大数据田地 http://lxw1234.com/archives/2015/09/516.htm Java使用极小 ...

  4. java内存结构(执行时数据区域)

    java虚拟机规范规定的java虚拟机内存事实上就是java虚拟机执行时数据区,其架构例如以下: 当中方法区和堆是由全部线程共享的数据区. Java虚拟机栈.本地方法栈和程序计数器是线程隔离的数据区. ...

  5. java内存区域----运行时数据区

    Java虚拟机的内存区域也叫做java运行时数据区,共分为五个部分:程序计数器,方法区,本地方法栈,虚拟机栈和堆.方法区和堆是线程之间所共有的,程序计数器,本地方法栈,虚拟机栈是线程私有的.其中虚拟机 ...

  6. 给定a、b两个文件,各存放50亿个url,每个url各占用64字节,内存限制是4G,如何找出a、b文件共同的url?

    给定a.b两个文件,各存放50亿个url,每个url各占用64字节,内存限制是4G,如何找出a.b文件共同的url? 可以估计每个文件的大小为5G*64=300G,远大于4G.所以不可能将其完全加载到 ...

  7. 从SQL Server到MySQL,近百亿数据量迁移实战

    从SQL Server到MySQL,近百亿数据量迁移实战 狄敬超(3D) 2018-05-29 10:52:48 212 沪江成立于 2001 年,作为较早期的教育学习网站,当时技术选型范围并不大:J ...

  8. Redis基本使用及百亿数据量中的使用技巧分享(附视频地址及观看指南)

    作者:依乐祝 原文地址:https://www.cnblogs.com/yilezhu/p/9941208.html 主讲人:大石头 时间:2018-11-10 晚上20:00 地点:钉钉群(组织代码 ...

  9. Java内存管理-你真的理解Java中的数据类型吗(十)

    勿在流沙筑高台,出来混迟早要还的. 做一个积极的人 编码.改bug.提升自己 我有一个乐园,面向编程,春暖花开! 作为Java程序员,Java 的数据类型这个是一定要知道的! 但是不管是那种数据类型最 ...

  10. JVM 内存区域 (运行时数据区域)

    JVM 内存区域 (运行时数据区域) 链接:https://www.jianshu.com/p/ec479baf4d06 运行时数据区域 Java 虚拟机在执行 Java 程序的过程中会把它所管理的内 ...

随机推荐

  1. 【赵渝强老师】Oracle数据库的存储结构

    Oracle的存储结构分为:物理存储结构和逻辑存储结构. 一.物理存储结构:指硬盘上存在的文件 数据文件(data file) 一个数据库可以由多个数据文件组成的,数据文件是真正存放数据库数据的.一个 ...

  2. android 代码如何增加atrace跟踪

    在 Android 代码中增加 Atrace 跟踪,可以使用 Android 提供的 android.os.Trace 类.这允许你在应用代码中手动添加自定义的跟踪点,以捕获特定代码段的执行情况.以下 ...

  3. iOS堆和栈的使用小结

    堆和栈都是一种数据项按序排列的数据结构,只能在一端(称为栈顶(top))对数据项进行插入和删除.堆,队列优先,先进先出(FIFO-first in first out):栈,先进后出(FILO-Fir ...

  4. 数组 findIndex 方法去重

    思路:先使用 findIndex 找到重复元素的下标,然后使用 splice 方法删除 :

  5. 二、java之面向对象

    面向对象 面向对象编程(Object-Oriented Programming,OOP) 面向对象编程的本质就是:以类的方式组织代码,以对象的组织(封装)数据 三大特性: ◆封装 ◆◆封装的概念 程序 ...

  6. KubeSphere 社区双周报|2024.03.29-04.11

    KubeSphere 社区双周报主要整理展示新增的贡献者名单和证书.新增的讲师证书以及两周内提交过 commit 的贡献者,并对近期重要的 PR 进行解析,同时还包含了线上/线下活动和布道推广等一系列 ...

  7. idea高效实用快捷键【待补充】

    1.快捷键 ctrl+alt+L代码格式化 2.快捷键 ctrl+h查看hierarchy,只能查看向上向下继承关系,而不能看实现了哪些接口. 3,选中右键--Diagram可以查看实现了哪些接口 4 ...

  8. HTML5+CSS3+JavaScript网页实战

    1. HTML5基础 HTML5,作为构建和呈现网页内容的标准标记语言,带来了许多革命性的变化.它不仅提供了更加语义化的标签,使得网页内容更具可读性和可访问性,还增加了对多媒体的原生支持,无需依赖第三 ...

  9. Next.js 与 React 全栈开发:整合 TypeScript、Redux 和 Ant Design

    在上一集,我们编写完毕导航页面,并且非常的美观,但是我们发现编写网站是存静态的,在现代的网站当中一般都是动静结合,也就是说部分数据是从数据库读取的,部分静态数据是写在网页上面的,因此这章讲述如何搭建一 ...

  10. 看图认识HTML5

    教程: https://www.w3.org/TR/html52 https://www.w3cschool.cn/html5/ https://www.runoob.com/html/html5-i ...