HDU5072 容斥原理
Time Limit:1000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u
Description
Now the Ragnarok is coming. We should choose 3 people to defend the evil. As a group, the 3 people should be able to communicate. They are able to communicate if and only if their id numbers are pairwise coprime or pairwise not coprime. In other words, if their id numbers are a, b, c, then they can communicate if and only if [(a, b) = (b, c) = (a, c) = 1] or [(a, b) ≠ 1 and (a, c) ≠ 1 and (b, c) ≠ 1], where (x, y) denotes the greatest common divisor of x and y.
We want to know how many 3-people-groups can be chosen from the n people.
Input
For each test case, the first line contains an integer n(3 ≤ n ≤ 10 5), denoting the number of people. The next line contains n distinct integers a 1, a 2, . . . , a n(1 ≤ a i ≤ 10 5) separated by a single space, where a i stands for the id number of the i-th person.
Output
Sample Input
5
1 3 9 10 2
Sample Output
题意:给出n(3 ≤ n ≤ 105)个数字,每个数ai满足1 ≤ ai ≤ 105,求有多少对(a,b,c)
满足[(a, b) = (b, c) = (a, c) = 1] or [(a, b) ≠ 1 and (a, c) ≠ 1 and (b, c) ≠ 1],
都互素或都不互素。
思路:由于数据范围不大10^5以内,总组合数C(n,3) longlong不会爆。
abc两两互质和两两不互质,就对应着两个互质另两个不互质,这两个集合构成了全集U。
不妨把前者称为集合A,后者称为集合B,那么A并B等于U,且A交B为空。U的大小为C(n,3)。
如果a,b,c不符合条件,必然有一对互质,一对不互质,不妨设a,b互质,b,c不互质,
于是我们可以枚举b来统计所有的三元组:如果a,c互质那么这样的三元组中b,c可以互换位置;
如果a,c不互质,那么a,b可以互换位置。每个答案被算了两遍。
所以只要枚举每个b,统计出k个和它不互质的,那么剩下n-1-k个就是和它互质的,
那么三元组就有k*(n-1-k)/2种。
对于b不超过10^5,质因子的个数不超过6个(2*3*5*7*11*13 *17>10^5)。
用状压搜索质因子组成的每个因数,如果某数是该因数的倍数,
那么就说明该数和b是不互质的。利用容斥原理统计出与b不互质的数的综述。
由于数据范围不超过10^5,预处理筛除出每个质数和每个质因子,复杂度为nlogn。
对于具体的n个数,再筛出在n个数中以他们为倍数的数的个数也是nlogn。(代码中用cntExtend[]记录)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cstring>
using namespace std;
typedef long long LL;
const int maxn = ;
int prim[maxn],isprim[maxn];
int primnum=;
void initprim(){
memset(isprim,-,sizeof isprim);
isprim[]=isprim[]=;
prim[primnum++] = ;
for(int i=;i<maxn;i+=){
isprim[i]=;
}
for(int i=;i<maxn;i+=){
if(isprim[i]){
prim[primnum++]=i;
for(int j=i+i;j<maxn;j+=i){
isprim[j]=;
}
}
}
}
int has[maxn];
int factor[maxn][];
int factornum[maxn];
void getfactor(){
for(int num=;num<maxn;num++){
int n=num,cnt = ;
for(int i=;i<primnum;i++){
if(isprim[n]) {
factor[num][cnt++]=n;
break;
}
if(n%prim[i]==){
factor[num][cnt++]=prim[i];
while(n%prim[i]==){
n/=prim[i];
}
}
}
factornum[num]=cnt;
}
}
int num[maxn],cntExtend[maxn];
void factorExtend(int len){
memset(cntExtend,,sizeof cntExtend);
for(int i=; i<maxn; i++){
for(int j=i; j<maxn; j+=i){
if(has[j])
cntExtend[i]++;
}
}
}
LL solve(int len){
LL re = ;
for(int i=; i<len; i++){
int n = num[i];
if(n==) continue;
int facnum = factornum[n];
LL sum=;
for(int k=(<<facnum)-; k>; k--){
int mul=,b=;
for(int j=; j<facnum; j++){
if((<<j) & k) {
mul*=factor[n][j];
b^=;
}
}
if(b){
sum+=cntExtend[mul]-;
}else{
sum-=cntExtend[mul]-;
}
}
re+=(sum)*(len--sum);
}
return re;
} int main(){
int T,n,x;
initprim();
getfactor();
scanf("%d",&T);
while(T--){
scanf("%d",&n);
memset(has,,sizeof has);
for(int i=;i<n;i++){
scanf("%d",&x);
has[x]++;
num[i]=x;
}
factorExtend(n);
LL ans = (LL)n*(n-)*(n-)/ - solve(n)/;
printf("%I64d\n",ans);
} }
HDU5072 容斥原理的更多相关文章
- 2014鞍山现场赛C题HDU5072(素筛+容斥原理)
Coprime Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others) Total ...
- HDU-5072 补集转化+容斥原理
题意:给n个数,求满足一下条件的三元组(a,b,c)数量:a,b,c两两互质或者a,b,c两两不互质. 解法:这道题非常巧妙地运用补集转化和容斥原理.首先我们令这n个数为n个点,然后两两之间连边如果是 ...
- 容斥原理+补集转化+MinMax容斥
容斥原理的思想大家都应该挺熟悉的,然后补集转化其实就是容斥原理的一种应用. 一篇讲容斥的博文https://www.cnblogs.com/gzy-cjoier/p/9686787.html 当我们遇 ...
- hdu4059 The Boss on Mars(差分+容斥原理)
题意: 求小于n (1 ≤ n ≤ 10^8)的数中,与n互质的数的四次方和. 知识点: 差分: 一阶差分: 设 则 为一阶差分. 二阶差分: n阶差分: 且可推出 性质: 1. ...
- hdu2848 Visible Trees (容斥原理)
题意: 给n*m个点(1 ≤ m, n ≤ 1e5),左下角的点为(1,1),右上角的点(n,m),一个人站在(0,0)看这些点.在一条直线上,只能看到最前面的一个点,后面的被档住看不到,求这个人能看 ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3028 Solved: 1460[Submit][Sta ...
- ACM/ICPC 之 中国剩余定理+容斥原理(HDU5768)
二进制枚举+容斥原理+中国剩余定理 #include<iostream> #include<cstring> #include<cstdio> #include&l ...
- HDU5838 Mountain(状压DP + 容斥原理)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5838 Description Zhu found a map which is a N∗M ...
随机推荐
- NOI题库--砝码称重V2(多重背包2^n拆分)
以前只会写多重背包的原版,渣的不行,为了做此题不得不学习了一下,发现其实也不难,只要理解了方法就好多了(PS:其实和倍增挺像的) 8756:砝码称重V2 总时间限制: 1000ms 内存限制: 655 ...
- POJ1995 Raising Modulo Numbers
Raising Modulo Numbers Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 6373 Accepted: ...
- Chkrootkit Sourcecode Learning
目录 . Chkrootkit Introduce . Source Code Frame . chklastlog.c . chkwtmp.c . ifpromisc.c . chkproc.c . ...
- JSP登录验证并显示信息
加入C标签: 加入jstl.jar 和standard.jar加入Lib文件夹中 将c.tld放入WEB-Info文件夹中 index.jsp <%@ page language="j ...
- 02 C语言指针
今天发帖记录自己学习C语言精髓的心理历程,人生就像是一次旅途,沿途总是能看到最美的风景,让我们的思想相逢在C语言中. 一 初识指针,指针的定义 指针是C语言中的一种类型,类似于整形,字符型等.既然C指 ...
- arp绑定网关MAC地址错误
为了防止局域网的arp 要绑定网关MAC地址 在vista/win中 用 arp -s 绑定网关会出现错误 ARP 项添加失败 C:\Users\sink>arp -a 接口: 10.200.5 ...
- mongo复习
$pop:-1移除数组的第一个元素,1移除最后一个元素eg: db.c.update({"name" : "toyota"},{$pop:{"titl ...
- 旋转屏幕时,假如自定义的xib大小变了,可能是这个属性没有修改
虽然xib内部启用了自动布局,但是当xib放入外界,xib自身的autoresizing是存在的
- Java Socket发送与接收HTTP消息简单实现
在上次Java Socket现实简单的HTTP服务我 们实现了简单的HTTP服务,它可以用来模拟HTTP服务,用它可以截获HTTP请求的原始码流,让我们很清楚的了解到我们向服务发的HTTP消息的结 构 ...
- UIGestureRecognizer ios手势识别温习
1.UIGestureRecognizer介绍 手势识别在iOS上非常重要,手势操作移动设备的重要特征,极大的增加了移动设备使用便捷性. iOS系统在3.2以后,为方便开发这使用一些常用的手势,提供了 ...