ShortestPath:Silver Cow Party(POJ 3268)
题目大意:一群牛在一块农田的不同的点,现在他们都要去到同一个地方开会,然后现在从那个地方回到原来的位置,点与点之间的连线都是单向的,并且通过一个路径需要一定时间,问你现在哪只牛需要最多的时间?
这一题可以这么看,回来的时候可以是从汇点(开会的地方)去到不同点的最短距离,然后从不同的点去的时候可以看做从汇点沿着路径的反方向看怎么走最短时间。
这样看这一题就简单很多了,因为没有负边,直接Dijkstra算法,算两次即可
#include <iostream>
#include <functional>
#include <algorithm>
#define MAX_N 1001
#define MAX_T 10000000 using namespace std; typedef int Position;
typedef struct edge_
{
int to;
int cost;
Position next;
}Edge;
typedef struct node_
{
Position point;
Position v;
int min_cost;
}Node; static Node Gragh_Head[MAX_N];
static Node Gragh_Head_rev[MAX_N];
static Edge Gragh_Edge[MAX_N *MAX_N];
static Edge Gragh_Edge_rev[MAX_N *MAX_N];
static Node heap[MAX_N];
static bool used[MAX_N]; void Search_Dijkstra(const int, const int);
int Delete_Min(int *const);
void Insert(Position, Node); int main(void)
{
int Node_sum, Path_sum, Goal_Farm, tmp_cost, tmp_to, tmp_start; while (~scanf("%d%d%d", &Node_sum, &Path_sum, &Goal_Farm))
{
for (int i = ; i <= Node_sum; i++)
{
Gragh_Head[i].point = -;
Gragh_Head_rev[i].point = -;
}
for (int i = ; i < Path_sum; i++)//邻接表储存
{
scanf("%d%d%d", &tmp_to, &tmp_start, &tmp_cost);//起点终点反过来
Gragh_Edge[i].to = tmp_to;//单向边,因为各个地方的牛要走到#X位置,相当于从#X走到各个点
Gragh_Edge[i].cost = tmp_cost;
Gragh_Edge[i].next = Gragh_Head[tmp_start].point;
Gragh_Head[tmp_start].point = i; Gragh_Edge_rev[i].to = tmp_start;//反向边存在另一个图中
Gragh_Edge_rev[i].cost = tmp_cost;
Gragh_Edge_rev[i].next = Gragh_Head_rev[tmp_to].point;
Gragh_Head_rev[tmp_to].point = i;
}
Search_Dijkstra(Node_sum, Goal_Farm);
}
return ;
} void Insert(Position pos, Node goal)
{
Position s = pos, pr; for (; s > ; s = pr)
{
pr = s % == ? s >> : (s - ) >> ;
if (heap[pr].min_cost > goal.min_cost) heap[s] = heap[pr];
else break;
}
heap[s] = goal;
} int Delete_Min(int *const size)
{
Position s1, s2, pr = , s;
Node out = heap[], tmp = heap[(*size)--]; for (; pr <= *size;)
{
s1 = pr << ; s2 = s1 + ;
if (s2 <= *size)
{
s = heap[s1].min_cost < heap[s2].min_cost ? s1 : s2;
heap[pr] = heap[s];
pr = s;
}
else if (s1 <= *size)
{
heap[pr] = heap[s1]; pr = s1;
break;
}
else break;
}
Insert(pr, tmp);
return out.v;
} void Search_Dijkstra(const int Node_sum, const int start)
{
int size = ;
Position V, adj_v; memset(used, , sizeof(used));
for (int i = ; i <= Node_sum; i++)
{
Gragh_Head[i].min_cost = MAX_T;
Gragh_Head[i].v = i;
}
Insert(++size, Gragh_Head[start]);
Gragh_Head[start].min_cost = ; while (size != )
{
V = Delete_Min(&size);
used[V] = ;
for (int k = Gragh_Head[V].point; k != -; k = Gragh_Edge[k].next)
{
adj_v = Gragh_Edge[k].to;
if (Gragh_Head[adj_v].min_cost > Gragh_Head[V].min_cost + Gragh_Edge[k].cost)
{
Gragh_Head[adj_v].min_cost = Gragh_Head[V].min_cost + Gragh_Edge[k].cost;
if (!used[adj_v])
Insert(++size, Gragh_Head[adj_v]);
}
}
} for (int i = ; i <= Node_sum; i++)
{
Gragh_Head_rev[i].min_cost = MAX_T;
Gragh_Head_rev[i].v = i;
}
memset(used, , sizeof(used));
size = ;//堆从0开始,反向边开始
Insert(++size, Gragh_Head_rev[start]);
Gragh_Head_rev[start].min_cost = ; while (size != )
{
V = Delete_Min(&size);
used[V] = ;
for (int k = Gragh_Head_rev[V].point; k != -; k = Gragh_Edge_rev[k].next)
{
adj_v = Gragh_Edge_rev[k].to;
if (Gragh_Head_rev[adj_v].min_cost > Gragh_Head_rev[V].min_cost + Gragh_Edge_rev[k].cost)
{
Gragh_Head_rev[adj_v].min_cost = Gragh_Head_rev[V].min_cost + Gragh_Edge_rev[k].cost;
if (!used[adj_v])
Insert(++size, Gragh_Head_rev[adj_v]);
}
}
}
int ans = -;
for (int i = ; i <= Node_sum; i++)
ans = max(ans, Gragh_Head[i].min_cost + Gragh_Head_rev[i].min_cost);
printf("%d\n", ans);
}
ShortestPath:Silver Cow Party(POJ 3268)的更多相关文章
- kuangbin专题专题四 Silver Cow Party POJ - 3268
题目链接:https://vjudge.net/problem/POJ-3268 题意:点X处开办排队,其他点的牛到X点去参加派对,然后从X点回到各自的点,通路是单向的,所有牛都要走最短路, 求出所有 ...
- Silver Cow Party POJ - 3268 (固定起点和固定终点的最短路)
思路:有向图.假设在X牧场参加party,从X回家的时候,以X为起点,使用一次Dijkstra算法即可.难点在于去X参加party的最短路如何求解. 这时候我们可以反向建图,即把原来有向图的方向全部反 ...
- Silver Cow Party POJ - 3268
#include<iostream> #include<queue> #include<cstring> using namespace std; +,INF=0x ...
- DIjkstra(反向边) POJ 3268 Silver Cow Party || POJ 1511 Invitation Cards
题目传送门 1 2 题意:有向图,所有点先走到x点,在从x点返回,问其中最大的某点最短路程 分析:对图正反都跑一次最短路,开两个数组记录x到其余点的距离,这样就能求出来的最短路以及回去的最短路. PO ...
- POJ 3268 Silver Cow Party (双向dijkstra)
题目链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS Memory Limit: 65536K Total ...
- POJ 3268 Silver Cow Party (最短路径)
POJ 3268 Silver Cow Party (最短路径) Description One cow from each of N farms (1 ≤ N ≤ 1000) convenientl ...
- POJ 3268——Silver Cow Party——————【最短路、Dijkstra、反向建图】
Silver Cow Party Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Su ...
- POJ 3268 Silver Cow Party 最短路—dijkstra算法的优化。
POJ 3268 Silver Cow Party Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbe ...
- POJ 3268 Silver Cow Party 最短路
原题链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS Memory Limit: 65536K Total ...
随机推荐
- 查询条件Where
1.字符串 $condition = 'name=\'Lily\' and age>10'; 2.数组 ['type' => 1, 'status' => 1] //生成 (type ...
- POJ 1740 A New Stone Game
A New Stone Game Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5453 Accepted: 2989 ...
- ACdream 1429 Rectangular Polygon
Rectangular Polygon Time Limit: 1000MS Memory Limit: 256000KB 64bit IO Format: %lld & %llu D ...
- ecshop 在php5.5上安装错误解决
1.找到ecshop\includes\cls_image.php文件 搜索 function gd_version 改成 static function gd_version 2.Strict St ...
- SQL Server 2005导入Excel表问题
EXCEL导入到SQL Server经常出现“文本被截断,或者一个或多个字符在目标代码页中没有匹配项” 原因: SQL Server的导入导出为了确定数据表的字段类型,取excel文件的前8行来判别. ...
- centos linux从无到有安装wordpress
序:本博客从无到有搭建wordpress,包括从服务器和域名购买,会将步骤一步一步记录下来.如果你也是新手,那你有福了,因为我的系统是centos,对号入座啊. 目录 一.准备域名和服务器一.安装ph ...
- WP8版微信5.4发布 新增夜间模式 暂没小视频
经过近一个月的内测,WP8版的微信终于更新了v 5.4版本.新增聊天中的照片墙.识别图片二维码.夜间模式等功能,还对资源占用情况进行了优化,让程序可以更流畅的在低配置设备上运行. 不过,WP8版微信5 ...
- java笔记--查看和修改线程的优先级
查看和修改线程的优先级 java中每一个线程都有优先级属性,在默认情况下,新建的线程的优先级与创建该线程的线程优先级相同.每当线程调度器选择要运行的线程时,通常选择优先级较高的线程. 注:线程的优先级 ...
- FineUI第三天----WebConfig的配置
这张我们讲讲整个站点Web.config配置文件的配置 Theme: 控件主题,目前支持三种主题风格(blue/gray/access,默认值:blue) Language: 控件语言(en/zh_C ...
- google推出的SwipeRefreshLayout下拉刷新用法
使用如下: 1.先下载android-support-v4.jar最新版本,之前的版本是没有SwipeRefreshLayout下拉刷新控件的,如果已经更新,此步骤可省略. 2.在xml文件中引用an ...