/// <summary>
        /// Use recursive method to implement Fibonacci
        /// </summary>
        /// <param name="n"></param>
        /// <returns></returns>
        static int Fn(int n)
        {
            if (n <= 0)
            {
                throw new ArgumentOutOfRangeException();
            }             if (n == 1||n==2)
            {
                return 1;
            }
            return checked(Fn(n - 1) + Fn(n - 2)); // when n>46 memory will  overflow
        }

递归算法时间复杂度是O(n2), 空间复杂度也很高的。当然不是最优的。

自然我们想到了非递归算法了。

一般的实现如下:


        /// <summary>
        /// Use three variables to implement Fibonacci
        /// </summary>
        /// <param name="n"></param>
        /// <returns></returns>
        static int Fn1(int n)
        {
            if (n <= 0)
            {
                throw new ArgumentOutOfRangeException();
            }             int a = 1;
            int b = 1;
            int c = 1;             for (int i = 3; i <= n; i++)
            {
                c = checked(a + b); // when n>46 memory will overflow
                a = b;
                b = c;
            }
            return c;
        }

这里算法复杂度为之前的1/n了,比较不错哦。但是还有可以改进的地方,我们可以用两个局部变量来完成,看下吧:


        /// <summary>
        /// Use less variables to implement Fibonacci
        /// </summary>
        /// <param name="n"></param>
        /// <returns></returns>
        static int Fn2(int n)
        {
            if (n <= 0)
            {
                throw new ArgumentOutOfRangeException();
            }             int a = 1;
            int b = 1;             for (int i = 3; i <= n; i++)
            {
                b = checked(a + b); // when n>46 memory will  overflow
                a = b - a;
            }
            return b;
        }

好了,这里应该是最优的方法了。

值得注意的是,我们要考虑内存泄漏问题,因为我们用int类型来保存Fibonacci的结果,所以n不能大于46(32位操作系统)

C#完美实现斐波那契数列的更多相关文章

  1. P3986 斐波那契数列

    题目描述 定义一个数列: f(0)=a,f(1)=b,f(n)=f(n−1)+f(n−2) 其中 a,b均为正整数,n≥2 . 问有多少种 (a,b),使得 k 出现在这个数列里,且不是前两项. 由于 ...

  2. C#求斐波那契数列第30项的值(递归和非递归)

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  3. 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)

    对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...

  4. js中的斐波那契数列法

    //斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var ...

  5. 剑指Offer面试题:8.斐波那契数列

    一.题目:斐波那契数列 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 二.效率很低的解法 很多C/C++/C#/Java语言教科书在讲述递归函数的时 ...

  6. 算法: 斐波那契数列C/C++实现

    斐波那契数列: 1,1,2,3,5,8,13,21,34,....     //求斐波那契数列第n项的值 //1,1,2,3,5,8,13,21,34... //1.递归: //缺点:当n过大时,递归 ...

  7. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  8. Python递归及斐波那契数列

    递归函数 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数.举个例子,我们来计算阶乘 n! = 1 * 2 * 3 * ... * n,用函数 fact(n)表示,可 ...

  9. 简单Java算法程序实现!斐波那契数列函数~

    java编程基础--斐波那契数列 问题描述:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 思路:可能出现的情况:(1) n=1 ,一种方法 ;(2)n=2 ...

随机推荐

  1. SQL Server DBA日常查询视图_数据库对象视图

    1.数据库 use master; exec sp_helpdb 1.1查询数据库大小 1.2查询数据库状态 use msdb select name, user_access_desc, --用户访 ...

  2. AHS日志收集的三种方法

    硬件环境:(描述实验机器初始环境) 型号 DL380 G8 序列号   配置扩展   备注   软件环境: □  操作系统:无 连接方式: □  无 实验步骤: 1在ILO里点information点 ...

  3. linux网络编程-(socket套接字编程UDP传输)

    今天我们来介绍一下在linux网络环境下使用socket套接字实现两个进程下文件的上传,下载,和退出操作! 在socket套接字编程中,我们当然可以基于TCP的传输协议来进行传输,但是在文件的传输中, ...

  4. PHP入门part1

    有人说php是世界上最好的语言,那它好在哪呢. 它是开源自由的软件,能够在所有的操作平台上稳定的运行,入门比较简单.对于我这种没学过什么计算机语言的人是最好的起步点. PHP现在的含义:Hypetex ...

  5. NineOldAndroid开源库简单使用demo

    看到很多开源库都使用了这个动画框架,就自己试了一下,果然很强大.把测试代码贴上,方便以后使用 package com.test.animation; import android.animation. ...

  6. 26. Binary Tree Maximum Path Sum

    Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start and ...

  7. (Hibernate进阶)Hibernate基本原理(一)

    在开始学hibernate之前,一直就有人说:Hibernate并不难,无非是对JDBC进一步封装.一句不难,难道是真的不难还是眼高手低? 如果只是停留在使用的层面上,我相信什么技术都不难,看看别人怎 ...

  8. SQL Server常用技巧

    1:在SQL语句中,将存储过程结果集(表)存入到临时表中 insert into #tmp EXEC P_GET_AllChildrenComany '80047' 说明:#tmp要提前创建好 2:字 ...

  9. Maven实战(五)坐标详解

    1.为什么要定义Maven坐标      在我们开发Maven项目的时候,需要为其定义适当的坐标,这是Maven强制要求的.在这个基础上,其他Maven项目才能应用该项目生成的构件. 2.Maven坐 ...

  10. Visual Studio 2013新建工程导入现有代码文件夹并且保持目录结构

    本文提供了一个在Windows环境下使用Visual Studio 2013编辑现有源代码并且保持目录结构的方法.本文使用VS2013中文社区版做示例(本版本为免费版,可在VS官网下载),其他版本的V ...