C#完美实现斐波那契数列
/// <summary>
/// Use recursive method to implement Fibonacci
/// </summary>
/// <param name="n"></param>
/// <returns></returns>
static int Fn(int n)
{
if (n <= 0)
{
throw new ArgumentOutOfRangeException();
} if (n == 1||n==2)
{
return 1;
}
return checked(Fn(n - 1) + Fn(n - 2)); // when n>46 memory will overflow
}
递归算法时间复杂度是O(n2), 空间复杂度也很高的。当然不是最优的。
自然我们想到了非递归算法了。
一般的实现如下:
/// <summary>
/// Use three variables to implement Fibonacci
/// </summary>
/// <param name="n"></param>
/// <returns></returns>
static int Fn1(int n)
{
if (n <= 0)
{
throw new ArgumentOutOfRangeException();
} int a = 1;
int b = 1;
int c = 1; for (int i = 3; i <= n; i++)
{
c = checked(a + b); // when n>46 memory will overflow
a = b;
b = c;
}
return c;
}
这里算法复杂度为之前的1/n了,比较不错哦。但是还有可以改进的地方,我们可以用两个局部变量来完成,看下吧:
/// <summary>
/// Use less variables to implement Fibonacci
/// </summary>
/// <param name="n"></param>
/// <returns></returns>
static int Fn2(int n)
{
if (n <= 0)
{
throw new ArgumentOutOfRangeException();
} int a = 1;
int b = 1; for (int i = 3; i <= n; i++)
{
b = checked(a + b); // when n>46 memory will overflow
a = b - a;
}
return b;
}
好了,这里应该是最优的方法了。
值得注意的是,我们要考虑内存泄漏问题,因为我们用int类型来保存Fibonacci的结果,所以n不能大于46(32位操作系统)
C#完美实现斐波那契数列的更多相关文章
- P3986 斐波那契数列
题目描述 定义一个数列: f(0)=a,f(1)=b,f(n)=f(n−1)+f(n−2) 其中 a,b均为正整数,n≥2 . 问有多少种 (a,b),使得 k 出现在这个数列里,且不是前两项. 由于 ...
- C#求斐波那契数列第30项的值(递归和非递归)
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...
- js中的斐波那契数列法
//斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var ...
- 剑指Offer面试题:8.斐波那契数列
一.题目:斐波那契数列 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 二.效率很低的解法 很多C/C++/C#/Java语言教科书在讲述递归函数的时 ...
- 算法: 斐波那契数列C/C++实现
斐波那契数列: 1,1,2,3,5,8,13,21,34,.... //求斐波那契数列第n项的值 //1,1,2,3,5,8,13,21,34... //1.递归: //缺点:当n过大时,递归 ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- Python递归及斐波那契数列
递归函数 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数.举个例子,我们来计算阶乘 n! = 1 * 2 * 3 * ... * n,用函数 fact(n)表示,可 ...
- 简单Java算法程序实现!斐波那契数列函数~
java编程基础--斐波那契数列 问题描述:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 思路:可能出现的情况:(1) n=1 ,一种方法 ;(2)n=2 ...
随机推荐
- C++模板编程里的主版本模板类、全特化、偏特化(C++ Type Traits)
1. 主版本模板类 首先我们来看一段初学者都能看懂,应用了模板的程序: 1 #include <iostream> 2 using namespace std; 3 4 template ...
- 不重启程序使用最新版package
相信很多使用python者都对reload方法比较熟悉了,通过不间断地reload可以实现某一module的热更新,主要就能在不重启应用的情况下实现部分模块的更新.但这种方法仅限于reload当前工作 ...
- python(24)urlencode和urldecode
当url地址含有中文,或者参数有中文的时候,这个算是很难正常了,但是把这样的url作为参数传递的时候(最常见的callback),需要把一些中文甚至‘/’做一下编码转换. 一.urlencode ur ...
- sysbench压力测试工具简介和使用(一)
sysbench压力测试工具安装和参数介绍 一.sysbench压力测试工具简介: sysbench是一个开源的.模块化的.跨平台的多线程性能测试工具,可以用来进行CPU.内存.磁盘I/O.线程.数据 ...
- Spring Boot 性能优化
spring 框架给企业软件开发者提供了常见问题的通用解决方案,包括那些在未来开发中没有意识到的问题.但是,它构建的 J2EE 项目变得越来越臃肿,逐渐被 Spring Boot 所替代.Spring ...
- (LinkedList)Intersection of Two Linked Lists
Write a program to find the node at which the intersection of two singly linked lists begins. For ex ...
- 山东ACM省赛历届入口
山东省第一届ACM大学生程序设计竞赛 山东省第二届ACM大学生程序设计竞赛 山东省第三届ACM大学生程序设计竞赛 山东省第四届ACM大学生程序设计竞赛 山东省第五届ACM大学生程序设计竞赛 山东省第六 ...
- 41. Unique Binary Search Trees && Unique Binary Search Trees II
Unique Binary Search Trees Given n, how many structurally unique BST's (binary search trees) that st ...
- GLSL语言基础
from http://www.kankanews.com/ICkengine/archives/120870.shtml 变量 GLSL的变量命名方式与C语言类似.变量的名称可以使用字母,数字以及下 ...
- 洛谷P3374 【模板】树状数组 1
P3374 [模板]树状数组 1 140通过 232提交 题目提供者HansBug 标签 难度普及/提高- 提交 讨论 题解 最新讨论 题目描述有误 题目描述 如题,已知一个数列,你需要进行下面两 ...