(一)神经网络简介

主要是利用计算机的计算能力,对大量的样本进行拟合,最终得到一个我们想要的结果,结果通过0-1编码,这样就OK啦

(二)人工神经网络模型

一、基本单元的三个基本要素

1、一组连接(输入),上面含有连接强度(权值)。

2、一个求和单元

3、一个非线性激活函数,起到将非线性映射作用,并将神经元输出幅度限制在一定范围内(在(0,1)或者(-1,1))

4、还有一个阀值(偏置)

归结如下:

PS:也可以选择将偏置(阀值)加入到线性求和里面

5、激活函数的选择

二、网络结构及工作方式

1、前馈型网络

主要用于模式识别和函数逼近。

2、反馈性网络

用作各种联想储存器;用于求解最优化问题。

(三)蠓虫问题与多层前馈网络

一、蠓虫分类问题

二、多层前馈网络

1、输入层2个,分别表示触角和翅膀的长度,只负责输入

2、处理层有3个(通过实验或者某些经验来确定),有负责计算

3、输出层有2个,有负责计算

然后我们要通过已有的数据来确定权重,所用的方法为向后传播算法

三、向后传播算法

然后就是求解一个非线性规划问题,可以使用前面章节所使用的方法来求解。

四、蠓虫分类问题的求解

clear;
p1=[1.24,1.27
1.36,1.74
1.38,1.64
1.38,1.82
1.38,1.90
1.40,1.70
1.48,1.82
1.54,1.82
1.56,2.08]; p2=[1.14,1.82
1.18,1.96
1.20,1.86
1.26,2.00
1.28,2.00
1.30,1.96]; p=[p1;p2]';
pr=minmax(p);
goal=[ones(1,9),zeros(1,6)
zeros(1,9),ones(1,6)];
plot(p1(:,1),p1(:,2),'h',p2(:,1),p2(:,2),'o')
net=newff(pr,[3,2],{'logsig','logsig'});
net.trainParam.show=10;
net.trainParam.lr=0.05;
net.trainParam.goal=1e-10;
net.trainParam.epochs=50000;
net=train(net,p,goal);
x=[1.24 1.80
1.28 1.84
1.40 2.04]';
y0=sim(net,p)
y=sim(net,x)

建模算法(六)——神经网络模型的更多相关文章

  1. BP神经网络模型与学习算法

    一,什么是BP "BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最 ...

  2. BP神经网络模型及算法推导

    一,什么是BP "BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最 ...

  3. 学习笔记CB009:人工神经网络模型、手写数字识别、多层卷积网络、词向量、word2vec

    人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档 ...

  4. 基于pytorch的CNN、LSTM神经网络模型调参小结

    (Demo) 这是最近两个月来的一个小总结,实现的demo已经上传github,里面包含了CNN.LSTM.BiLSTM.GRU以及CNN与LSTM.BiLSTM的结合还有多层多通道CNN.LSTM. ...

  5. 手写数字识别 ----卷积神经网络模型官方案例注释(基于Tensorflow,Python)

    # 手写数字识别 ----卷积神经网络模型 import os import tensorflow as tf #部分注释来源于 # http://www.cnblogs.com/rgvb178/p/ ...

  6. 机器学习入门-BP神经网络模型及梯度下降法-2017年9月5日14:58:16

    BP(Back Propagation)网络是1985年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一. B ...

  7. 通过TensorFlow训练神经网络模型

    神经网络模型的训练过程其实质上就是神经网络参数的设置过程 在神经网络优化算法中最常用的方法是反向传播算法,下图是反向传播算法流程图: 从上图可知,反向传播算法实现了一个迭代的过程,在每次迭代的开始,先 ...

  8. 深度学习之PyTorch实战(2)——神经网络模型搭建和参数优化

    上一篇博客先搭建了基础环境,并熟悉了基础知识,本节基于此,再进行深一步的学习. 接下来看看如何基于PyTorch深度学习框架用简单快捷的方式搭建出复杂的神经网络模型,同时让模型参数的优化方法趋于高效. ...

  9. 1. RNN神经网络模型原理

    1. RNN神经网络模型原理 2. RNN神经网络模型的不同结构 3. RNN神经网络-LSTM模型结构 1. 前言 循环神经网络(recurrent neural network)源自于1982年由 ...

随机推荐

  1. 各种工具使用手册:http://www.itshouce.com.cn/linux/linux-tcpdump.html 关于tcpdump!!!!

    各种工具使用手册:http://www.itshouce.com.cn/linux/linux-tcpdump.html 关于tcpdump!!!! 实用tcpdump命令 //查看本机与mysql的 ...

  2. 使用stty修改终端设置 stty 用法!

    在linux/unix平台上的 sqlplus中,如果输错了字符,要想删除,习惯性的按下backspace键后,发现非但没有删除想要删掉的字符,还多出了两个字符^H.当然,我们 可以同时按下ctrl+ ...

  3. DataSnap 用TStream 传递大数据 返回流大小为-1的情况

    DataSnap可以直接传递和返回TStream类型的参数,这点是很方便的.但是很多人发现好像大小稍微大点就工作不正常了,就变相使用其它类型转换来转换去,这样便利性就失去了. 官方有篇博客很详细的介绍 ...

  4. Java--时间处理

    package javatest; import java.text.SimpleDateFormat; import java.util.Date; class timeTest{ public s ...

  5. ICMP-type对应表

    一次在某个防火墙配置策略里看到如下的代码: iptables -A INPUT -p icmp --icmp-type 8 -j ACCEPT iptables -A FORWARD -p icmp ...

  6. 《linux备份与恢复之一》.tar.bz2与.tar.gz格式的文本压缩率比较

    对于文本压缩,据说bzip的算法要优于gzip,从而拥有更好的压缩比.特地找了两个文件来做一下测试,以下为测试结果:   (1)源文件为591MB, .tar.bz2文件为61MB(10.32%), ...

  7. PHP 冒泡原理

    header('Content-Type: text/html; charset=utf-8'); // 简单冒泡算法 $a = array(5,43,3,2,1); function mp($a){ ...

  8. 【GoLang】GoLang GOPATH 工程管理 最佳实践

    参考资料: MAC下 Intellij IDEA GO语言插件安装及简单案例:http://blog.csdn.net/fenglailea/article/details/53054502 关于wi ...

  9. 【OpenStack】OpenStack系列1之Python虚拟环境搭建

    安装virtualenv相关软件包 安装:yum install python-virtualenv* -y 简介,安装包主要包括, python-virtualenv:virtualenv用于创建独 ...

  10. 使用kettle转换中的JavaScript对密码进行加密和解密

    日常开发中,为了确保账号和密码的安全,时常要对密码进行加密和解密.然而kettle是怎么对密码进行加密和解密的呢? 下面的代码需要再转换中的JavaScript中运行. var encrypted_p ...