成段更新,需要用到延迟标记(或者说懒惰标记),简单来说就是每次更新的时候不要更新到底,用延迟标记使得更新延迟到下次需要更新or询问到的时候.

此处建议在纸上模拟一遍。

Problem Description
In the game of DotA, Pudge’s meat hook is actually the most horrible thing for most of the heroes. The hook is made up of several consecutive metallic sticks which are of the same length.

Now Pudge wants to do some operations on the hook.

Let us number the consecutive metallic sticks of the hook from 1 to N. For each operation, Pudge can change the consecutive metallic sticks, numbered from X to Y, into cupreous sticks, silver sticks or golden sticks.

The total value of the hook is calculated as the sum of values of N metallic sticks. More precisely, the value for each kind of stick is calculated as follows:

For each cupreous stick, the value is 1.

For each silver stick, the value is 2.

For each golden stick, the value is 3.

Pudge wants to know the total value of the hook after performing the operations.

You may consider the original hook is made up of cupreous sticks.

 
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 10 cases.

For each case, the first line contains an integer N, 1<=N<=100,000, which is the number of the sticks of Pudge’s meat hook and the second line contains an integer Q, 0<=Q<=100,000, which is the number of the operations.

Next Q lines, each line contains three integers X, Y, 1<=X<=Y<=N, Z, 1<=Z<=3, which defines an operation: change the sticks numbered from X to Y into the metal kind Z, where Z=1 represents the cupreous kind, Z=2 represents the silver kind and Z=3 represents the golden kind.

 
Output
For each case, print a number in a line representing the total value of the hook after the operations. Use the format in the example.

 
Sample Input
1
10
2
1 5 2
5 9 3
 
Sample Output
Case 1: The total value of the hook is 24.
 
#include <stdio.h>
#include <iostream>
using namespace std;
const int N = 400000;
int tree[N], flag[N], x, y, value;
void build(int l, int r, int k) {
tree[k] = 1; //初始为1
flag[k] = 0;
if (l == r)
return;
int m = (l + r) / 2;
build(l, m, k * 2); //k*2 即为k的左子树
build(m + 1, r, k * 2 + 1); // k*2+1 即为k的右子树
tree[k] = tree[k * 2] + tree[k * 2 + 1]; //更新当前节点的指, 即左子树+右子树
} //向下更新。 k为更新的节点的,m为更新区间的长度
//将k节点的信息更新到它的左右子树上
void down(int k, int m) {
if (flag[k]) {
flag[k * 2] = flag[k * 2 + 1] = flag[k];
tree[k * 2] = (m - (m / 2)) * flag[k];
tree[k * 2 + 1] = m / 2 * flag[k];
flag[k] = 0;
}
} void update(int l, int r, int k) {
if (x <= l && y >= r) {
flag[k] = value; //存储当前的 value
tree[k] = (r - l + 1) * value;
return;
}
down(k, r - l + 1); //更新k节点
int m = (l + r) / 2;
if (x <= m)
update(l, m, k * 2);
if (y > m)
update(m + 1, r, k * 2 + 1);
tree[k] = tree[k * 2] + tree[k * 2 + 1];
} int main() {
//freopen("in.txt", "r", stdin);
int T , n , m;
scanf("%d",&T);
for (int cas = 1; cas <= T; cas ++) {
scanf("%d%d",&n,&m);
build(1 , n , 1);
while(m--) {
scanf("%d %d %d", &x, &y, &value);
update( 1, n ,1);
}
printf("Case %d: The total value of the hook is %d.\n",cas , tree[1]);
}
return 0;
}

线段树 [成段更新] HDU 1698 Just a Hook的更多相关文章

  1. hdu 4747【线段树-成段更新】.cpp

    题意: 给出一个有n个数的数列,并定义mex(l, r)表示数列中第l个元素到第r个元素中第一个没有出现的最小非负整数. 求出这个数列中所有mex的值. 思路: 可以看出对于一个数列,mex(r, r ...

  2. HDU 3577 Fast Arrangement ( 线段树 成段更新 区间最值 区间最大覆盖次数 )

    线段树成段更新+区间最值. 注意某人的乘车区间是[a, b-1],因为他在b站就下车了. #include <cstdio> #include <cstring> #inclu ...

  3. ACM: Copying Data 线段树-成段更新-解题报告

    Copying Data Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u Description W ...

  4. Codeforces Round #149 (Div. 2) E. XOR on Segment (线段树成段更新+二进制)

    题目链接:http://codeforces.com/problemset/problem/242/E 给你n个数,m个操作,操作1是查询l到r之间的和,操作2是将l到r之间的每个数xor与x. 这题 ...

  5. POJ 2777 Count Color (线段树成段更新+二进制思维)

    题目链接:http://poj.org/problem?id=2777 题意是有L个单位长的画板,T种颜色,O个操作.画板初始化为颜色1.操作C讲l到r单位之间的颜色变为c,操作P查询l到r单位之间的 ...

  6. HDU1698_Just a Hook(线段树/成段更新)

    解题报告 题意: 原本区间1到n都是1,区间成段改变成一个值,求最后区间1到n的和. 思路: 线段树成段更新,区间去和. #include <iostream> #include < ...

  7. poj 3468 A Simple Problem with Integers 【线段树-成段更新】

    题目:id=3468" target="_blank">poj 3468 A Simple Problem with Integers 题意:给出n个数.两种操作 ...

  8. POJ3468_A Simple Problem with Integers(线段树/成段更新)

    解题报告 题意: 略 思路: 线段树成段更新,区间求和. #include <iostream> #include <cstring> #include <cstdio& ...

  9. poj 3648 线段树成段更新

    线段树成段更新需要用到延迟标记(或者说懒惰标记),简单来说就是每次更新的时候不要更新到底,用延迟标记使得更新延迟到下次需要更新or询问到的时候.延迟标记的意思是:这个区间的左右儿子都需要被更新,但是当 ...

随机推荐

  1. LPCTSTR

    LPCTSTR类型: L表示long指针 这是为了兼容Windows 3.1等16位操作系统遗留下来的,在win32中以及其他的32位操作系统中, long指针和near指针及far修饰符都是为了兼容 ...

  2. PHP学习之-1.2 认识PHP脚本标识

    想在代码中实现PHP代码非常简单,如下面代码 <?php echo "和我一起学习php吧"; ?> 就像你在编写javascript脚本中需要写<script& ...

  3. 基于visual Studio2013解决C语言竞赛题之1091多项式

        题目 解决代码及点评 /************************************************************************/ /* ...

  4. mysql-5.6.13在windows平台下的安装、使用(图解)

    本文同步至:http://www.waylau.com/mysql-5-6-13-windows-platform-installation-use-graphic/ 一. 首先电脑要具备.Net F ...

  5. JavaScript闭包(closure)入门: 拿"开发部"和"技术牛"举个例子

    虽然只是一小段菜鸟的学习笔记 , 不过还是希望看到的高手看到不足的时候帮忙指点~ 一:代码和执行过程 /** * http://blog.csdn.net/ruantao1989 * ==>Ju ...

  6. 【C语言天天练(十五)】字符串输入函数fgets、gets和scanf

    引言:假设想把一个字符串读到程序中.必须首先预留存储字符串的空间.然后使用输入函数来获取这个字符串. 读取字符串输入的第一件事是建立一个空间以存放读入的字符串. char *name; scanf(& ...

  7. NYOJ 1066 CO-PRIME(数论)

    CO-PRIME 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描写叙述 This problem is so easy! Can you solve it? You are ...

  8. 初识JAVA,对servlet的理解

    一.WEB开发的简单理解 Web开发是一个指代网页或站点编写过程的广义术语.网页使用 HTML.CSS 和 JavaScript编写.这些页面可能是类似于文档的简单文本和图形.页面也能够是交互式的,或 ...

  9. c vs c++ in strcut and class

    c vs c++ in strcut and class 总习惯用c的用法,现在学习C++,老爱拿来比较.声明我用的是g++4.2.1 SUSE Linux.看例子吧 #include <ios ...

  10. <摘录>详谈高性能UDP服务器的开发

    上一篇文章我详细介绍了如何开发一款高性能的TCP服务器的网络传输层.本章我将谈谈如何开发一个高性能的UDP服务器的网络层.UDP服务器的网络层开 发相对与TCP服务器来说要容易和简单的多,UDP服务器 ...