LeetCode OJ 53. Maximum Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4]
,
the contiguous subarray [4,−1,2,1]
has the largest sum = 6
.
More practice:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
【题目分析】
题目要求我们在给定的一个数组中找出一个数组元素之和最大子数组,并返回最大的和。
【思路】 动态规划
max_sum 必然是以A[i](取值范围为A[0] ~ A[n-1])结尾的某段构成的,也就是说max_sum的candidate必然是以A[i]结果的。如果遍历每个candidate,然后进行比较,那么就能找到最大的max_sum了。
假设把A[i]之前的连续段叫做sum。可以很容易想到:
1. 如果sum>=0,就可以和A[i]拼接在一起构成新的sum'。因为不管A[i]多大,加上一个正数总会更大,这样形成一个新的candidate。
2. 反之,如果sum<0,就没必要和A[I]拼接在一起了。因为不管A[i]多小,加上一个负数总会更小。此时由于题目要求数组连续,所以没法保留原sum,所以只能让sum等于从A[i]开始的新的一段数了,这一段数字形成新的candidate。
3. 如果每次得到新的candidate都和全局的max_sum进行比较,那么必然能找到最大的max sum subarray.
在循环过程中,用max_sum记录历史最大的值。从A[0]到A[n-1]一步一步地进行。
其实上面的思想是最简单的动态规划的思想,用maxl[i]数组表示包含i元素的子数组的最大和,则动态规划的递推公式为:maxl[i+1] = max(maxl[i]+A[i], A[i+1]),即最大值一定是数组当前元素以及数组当前元素和前一结果之和的最大值。接下来整个问题的最大值就是maxl数组中的最大值。
面的分析过程是一个简单的动态规划,这个算法叫做 Kadane's algorithm,参加维基百科:https://en.wikipedia.org/wiki/Maximum_subarray_problem
时间复杂度:O(n) 空间复杂度:O(1)
问题解决了,可是发现了下面的拓展,即分治解决。提到分治,思路来了,当前的最大值等于左侧最大值和右侧最大值中较大的。可是,有一点点问题,这个最大值还有可能是横跨左右两侧的啊。。。
于是,在处理两侧的子问题的时候,需要同时分别计算包含最左端元素的最大值(lres)和包含最右端元素的最大值(rres)。这样,当前的最大值就为“左侧最大值(res1)”、“右侧最大值(res2)”、“左侧含最右端元素的最大值(rres1)及右侧包含最左端元素的最大值(lres2)之和”三者的最大值。
而由于lres可分为只在左侧和也包含右侧两种情况:
- 左侧含最左端元素的最大值(lres1)
- 左侧元素之和加右侧含最左端元素的最大值(all1+lres2)
含最右端元素的最大值同理,即lres = max(lres1, all1 + lres2)和rres = max(rres2, all2 + rres1)。
问题得以解决。至于时间复杂度,个人认为,是n/2 + n/4 + n/8 + ... = O(n)。
public class Solution {
public int maxSubArray(int[] nums) {
if(nums == null || nums.length == 0) return 0; int length = nums.length;
if (length == 1){
return nums[0];
}
int currentsum = nums[0];
int maxsum = nums[0];
for (int i = 1; i < length; i++){
if (currentsum >= 0){
currentsum += nums[i];
} else{
currentsum = nums[i];
} maxsum = maxsum > currentsum ? maxsum : currentsum;
} return maxsum;
}
}
【C++代码】分而治之
class Solution{
public:
int maxSubArray(int A[], int n){
int res, lres, rres, all;
maxSubArray(A, , n - , res, lres, rres, all);
return res;
}
private:
void maxSubArray(int A[], int l, int r, int &res, int &lres, int &rres, int &all){
if(l == r)
{
res = lres = rres = all = A[l];
return;
} int m = (l + r) / ;
int res1, lres1, rres1, all1, res2, lres2, rres2, all2; maxSubArray(A, l, m, res1, lres1, rres1, all1);
maxSubArray(A, m + , r, res2, lres2, rres2, all2); res = max(max(res1, res2), rres1 + lres2);
lres = max(lres1, all1 + lres2);
rres = max(rres2, all2 + rres1);
all = all1 + all2;
}
};
LeetCode OJ 53. Maximum Subarray的更多相关文章
- [Leetcode][Python]53: Maximum Subarray
# -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 53: Maximum Subarrayhttps://leetcode.co ...
- Leetcode之53. Maximum Subarray Easy
Leetcode 53 Maximum Subarray Easyhttps://leetcode.com/problems/maximum-subarray/Given an integer arr ...
- 【LeetCode】53. Maximum Subarray (2 solutions)
Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...
- 【一天一道LeetCode】#53. Maximum Subarray
一天一道LeetCode系列 (一)题目 Find the contiguous subarray within an array (containing at least one number) w ...
- 【LeetCode】53. Maximum Subarray 最大子序和 解题报告(Python & C++ & Java)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 暴力解法 动态规划 日期 题目地址: https:/ ...
- [leetcode DP]53. Maximum Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- LeetCode OJ:Maximum Subarray(子数组最大值)
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- 【Leetcode】53. Maximum Subarray
题目地址: https://leetcode.com/problems/maximum-subarray/description/ 题目描述: 经典的求最大连续子数组之和. 解法: 遍历这个vecto ...
- Leetcode No.53 Maximum Subarray(c++实现)
1. 题目 1.1 英文题目 Given an integer array nums, find the contiguous subarray (containing at least one nu ...
随机推荐
- YUM变量
有一个简单的python命令可以看到yum的 releaserver.arch.basearch的值 /usr/bin/python -c 'import yum, pprint; yb = yum. ...
- 解决IE兼容总汇【转】
转载声明: 藏羚羊 2014年04月16日 于 前端开拓者 发表 本文固定链接: http://www.frontopen.com/2552.html 1. <meta http-equiv=“ ...
- 浙大pat1013题解
1013. Battle Over Cities (25) 时间限制 400 ms 内存限制 32000 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue It ...
- .net程序在无.net环境下运行
看了篇文章 测试了下竟然真的可以运行 测试环境是XP下 没有装NET2.0的情况下 可以运行的 不过需要每次输入命令才能运行 点击后还是会报错 原文如下 众所周知,.net程序必须运行在.n ...
- 面试题-Java基础-异常部分
1.Java中的两种异常类型是什么?他们有什么区别? Java中有两种异常:受检查的(checked)异常和不受检查的(unchecked)异常.不受检查的异常不需要在方法或者是构造函数上声明,就算方 ...
- eclipse 导入tomcat7源码
导入tomcat的源码其实说简单也不简单,说不简单也简单,主要还是环境问题,中间花费了我很多时间,网上找了很多都没什么用,参考一些文章,然后自己慢慢摸索出来的. 环境:(1)jdk:jdk1.6.0_ ...
- VMware下安装CentOS6.5
一.工具 1.VMware-workstation-full-12.5.0-4352439.exe 2.CentOS-6.5-x86_64-minimal.iso 二.安装VMware虚拟机 1.选择 ...
- python 学习 [day8]class成员
一.类的成员 类的成员可以分为三大类:字段.方法和属性 注:所有成员中,只有普通字段的内容保存对象中,即:根据此类创建了多少对象,在内存中就有多少个普通字段.而其他的成员,则都是保存在类中,即:无论对 ...
- JS算法与数据结构之八皇后(晕晕)
算法核心思想 回溯算法 递归实现 程序实现 坐标系 循环递归 回溯 计数 收集位置 特效添加 <!DOCTYPE HTML> <html> <head> <m ...
- python修炼4
---恢复内容开始--- 集合 建立 set() ={},集合没有顺序,由不可改变的数字 ,字符串,元组构成 #交集print(a&b) #a.intersection(b) #并集prin ...