The perception modules run in the context of the process Cognition. They detect features in the image that was just taken by the camera. The modules can be separated into four categories. The modules of the perception infrastructure provide representations that deal with the perspective of the image taken, provide the image in different formats, and provide representations that limit the area interesting for further image processing steps. Based on these representations, modules detect features useful for self-localization, the ball, and obstacles. All information provided by the perception modules is relative to the robot’s position.

感知模块在认知进程中运行。他们检测到相机拍摄图像中的特征。该模块可分为四类。这个感知基础架构模块提供表示(?),来处理采集的图像的角度,提供不同格式的图像,并提供表示,限制用于进一步的图像处理的感兴趣区域。基于这些表示,模块检测有用特征来自我定位,以及球和障碍的检测。所有提供的感知模块信息是相对于机器人位置的。

4.1Perception Infrastructure

4.1.1Using Both Cameras

The NAO robot is equipped with two video cameras that are mounted in the head of the robot.The first camera is installed in the middle forehead and the second one approx. 4cm below. The lower camera is tilted by 39.7 ◦ with respect to the upper camera and both cameras have a vertical opening angle of 47.64 ◦ . Because of that, the overlapping parts of the images are too small for stereo vision. It is also impossible to get images from both cameras at the exact same time, as they are not synchronized on a hardware level. This is why we analyze only one picture at a time and do not stitch the images together. To be able to analyze the pictures from both the upper and lower camera in real-time without loosing any images, the Cognition process runs at 60Hz. Since the NAO is currently not able to provide images from both cameras at their maximum resolution, we use a smaller resolution for the lower camera. During normal play the lower camera sees only a very small portion of the field, which is directly in front of the robot’s feet. Therefore, objects in the lower image are close to the robot and rather big. We take advantage of this fact and run the lower camera with half the resolution of the upper camera, thereby saving a lot of computation time. Both cameras deliver their images in the YUV422 format. The upper camera provides 640 × 480 pixels while the lower camera only provides 320 × 240 pixels. As the perception of features in the images relies either on color classes (e. g. for reqion building) or the luminance values of the image pixels (e. g. for computing edges in the image), the YUV422 images are converted to the “extracted and color-classified” ECImage. The ECImage consists of two images: the gray scaled image obtained from the Y channel of the camera image and a so-called “colored” image mapping each image pixel to a color class. Cognition modules processing an image need to know from which camera it comes. For this reason, we implemented the representation CameraInfo, which contains this information as well as the resolution of the current image.

NAO机器人配备了两个摄像头在机器人的头部,第一摄像机安装在前额中间,第二个约偏下4cm。较低的相机是相对于上相机倾斜39.7◦,双摄像机有47.64◦垂直张角。正因为如此,重叠的部分的图像对于立体视觉而言太小。同时从两台相机获取图像也是不可能的,因为它们不是在硬件级别上同步的.。这就是为什么我们一次只分析一幅图片,而不是将图像拼接在一起.。为了能够实时地分析上下摄像头的图像,而不丢失任何图像,认知进程运行在60Hz。由于NAO目前无法从两个相机以最大分辨率提供图像,我们对低相机使用较低分辨率。在正常比赛中,低摄像头只看到一小部分的区域,这是在机器人脚前的区域。因此,在低相机的图像中的物体是靠近机器人且相当大的。我们利用这一事实,以上摄像头一半的分辨率运行低摄像头,从而节省了大量的计算时间。两个相机提供YUV422格式图像。上相机640×480像素,而下摄像头只有320×240像素。因为图像特征感知是依赖颜色类(例如内建),和图像像素的亮度值(例如图像中计算的边缘),YUV422图像被转换为“提取和颜色分类”的ECImage。ECImage包含两幅图像——从摄像机图像的Y通道获得的灰度图,和一个所谓的“彩色”图像(每个像素点匹配到一个颜色类)。处理图像的认知模块需要知道它来自哪个摄像机。为此,我们采用了CameraInfo标识,包含此信息以及当前图像的分辨率。

(representations 到底应该翻译成什么?表示,标识?希望大家可以留言)

Perception(0-1.1)的更多相关文章

  1. 【编程题目】n 个数字(0,1,…,n-1)形成一个圆圈,从数字 0 开始

    第 18 题(数组):题目:n 个数字(0,1,…,n-1)形成一个圆圈,从数字 0 开始,每次从这个圆圈中删除第 m 个数字(第一个为当前数字本身,第二个为当前数字的下一个数字).当一个数字删除后, ...

  2. 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m

    给定两个数m,n,其中m是一个素数. 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m. 输入 第一行是一个整数s(0<s<=100),表示测试数据的组数 随后 ...

  3. 经典面试题:n个数字(0,1,…,n-1)形成一个圆圈

    题目: n个数字(0,1,…,n-1)形成一个圆圈,从数字0开始, 每次从这个圆圈中删除第m个数字(第一个为当前数字本身,第二个为当前数字的下一个数字). 当一个数字删除后,从被删除数字的下一个继续删 ...

  4. HDFS(0.20.2)运营中急救方案

    这段时间折腾的都是hadoop和lucene,总结了hadoop在运营过程中出现问题时的解决方案,请大家指教! HDFS(0.20.2)运营中急救方案 1           Namenode 挂掉( ...

  5. (0.2.6)Mysql安装——编译安装

    (0.2.6)Mysql安装——编译安装 待完善

  6. (0.2.7)Mysql安装——多实例安装

    (0.2.6)Mysql安装——多实例安装 待完善

  7. (0.2.3)Mysql安装——二进制安装

    Linux平台下二进制方式安装卸载mysql 本章节:二进制安装mysql 目录: 1.基于Linux平台的Mysql项目场景介绍 2.mysql数据库运行环境准备-最优配置 3.如何下载mysql数 ...

  8. 淘宝网触屏版 - 学习笔记(0 - 关于dpr)

    注:本文是学习笔记,并不是教程,所以会有很多我不理解或猜测的问题,也会有不尽详实之处,望见谅. 对于pc端网页设计师来说,移动端的网页制作,我之前只是简单的加了一个 <meta name=&qu ...

  9. (0.2.1)mysql数据库环境-操作系统配置

    目录 1.基于Linux平台的Mysql项目场景介绍 2.mysql数据库运行环境准备-最优配置 2.1.如何查看官方文档了解环境要求 2.2.安装虚拟机环境与操作系统 2.3.操作系统最优配置9大步 ...

  10. (0.2.4)Mysql安装——yum源安装

    转自:https://www.cnblogs.com/jimboi/p/6405560.html Centos6.8通过yum安装mysql5.7 1.下载好对应版本的yum源文件 2.安装用来配置m ...

随机推荐

  1. kvm与qemu

    载请注明出处: http://www.openext.org/2014/04/kvmqemu/ http://blog.csdn.net/muge0913/article/details/245577 ...

  2. Wijmo 5 + Ionic Framework之:费用跟踪 App

    Wijmo 5 + Ionic Framework之:费用跟踪 App 费用跟踪应用采用了Wijmo5和Ionic Framework创建,目的是构建一个hybird app. 我们基于<Mob ...

  3. C#放缩、截取、合并图片并生成高质量新图的类

    原文:C#放缩.截取.合并图片并生成高质量新图的类 using System;using System.Drawing;using System.Drawing.Imaging;using Syste ...

  4. AngularJS的依赖注入方式

    在定义controller,module,service,and directive时有两种方式, 方式一: var myModule = angular.module('myApp', []); m ...

  5. [转]C# and the using Statement in 3 seconds and a bug in Reflector

    Using() Statement in 3 seconds and a bug in Reflector The boring, known accross the board definition ...

  6. CompareValues标签对Model中的属性进行验证

    在Asp.Net MVC中实现CompareValues标签对Model中的属性进行验证   在Asp.Net MVC中可以用继承ValidationAttribute的方式,自定制实现Model两个 ...

  7. Unity Container

    Unity Container中的几种注册方式与示例 2013-12-08 22:43 by 小白哥哥, 22 阅读, 0 评论, 收藏, 编辑 1.实例注册 最简单的注册方式就是实例注册,Unity ...

  8. Day2:T1搜索 T2最小生成树

    T1:广搜+判断矩形 注:如何判断搜的是否为矩形: 在广搜的时候,记录下边界的坐标,然后枚举一遍过去,如果搜到"."就是牛群,否则就是房间 瞥了一眼ccy的做法,据说是floodf ...

  9. 【JS】布尔逻辑

    0 是逻辑的 false 1 是逻辑的 true 空字符串是逻辑的 false null 是逻辑的 false NaN 是逻辑的 false 字符串 'false' 是逻辑的 true Boolean ...

  10. TOGAF架构能力框架之架构合同、成熟度模型和架构技能框架

    TOGAF架构能力框架之架构合同.成熟度模型和架构技能框架 5. 架构合同 架构合同是在开发团体和赞助者之间关于架构的交付物.质量以及适用目标的联合协议,并且通过有效的架构治理将会促使这些协议的成功施 ...