问题一

证明:一根1米长的绳子,随机切成 $N$ 刀,变成($N+1$)根绳子,则最短的一根绳子长度的期望为 $\displaystyle \frac{1}{(N+1)^2}$.

证:

引理:当分成 $n$ 段时,第一段的长度至少为 $x$ 的概率为 $(1-x)^{n-1}$.

很容易理解,因为第一个人拿 $x$,后面的 $n-1$ 刀都切在 $(1-x)$.

推论:当切成 $n$ 段时,每一段的长度至少为 $x$ 的概率为 $(1-nx)^{n-1}$.

即 $P(v_{min} > x) = (1-nx)^{n-1}$

则最小值的数学期望为

$$\begin{aligned} & E(V_{min}) \\ &= \int_0^{\frac{1}{n}} v_{min}p_{min}d(v_min) \\ &= \int _0^{\frac{1}{n}} P(v_min > x)dx \\ &= \int _0^{\frac{1}{n}} (1-nx)^{n-1}dx \\&= \int_0^1\frac{1}{n} (1-t)^{n-1}dt \\&= \frac{1}{n^2} \end{aligned}$$

更一般的,分成 $n$ 段时,第 $k$ 长的长度的数学期望为:$E(v_k) = \frac{1}{n}\sum_{i=k}^n \frac{1}{i}$.

问题二

证明:对于 $n$ 个 $[0, 1]$ 之间的随机变量 $x_1,x_2,..,x_n$,第 $k$ 小的那个的期望值为 $\frac{k}{n+1}$.

证:

参见Wiki中的Order statistic,即顺序统计量,其中表明单位区间上均匀分布的顺序统计量具有属于 Beta 分布的边际分布。

进一步,均匀分布的第 $k$ 阶段统计量服从 $\beta$ 分布,即 $U_{(k)} \sim Beta(k, n+1-k)$.

已知 Beta 分布 $\beta(a,b)$ 的均值为 $\frac{a}{a+b}$,

因此第 $k$ 小的期望为 $\frac{k}{n+1}$

参考链接:

1. https://www.zhihu.com/question/30359365

2. https://www.wikiwand.com/en/Order_statistic

3. https://ksmeow.moe/earthquake_zjoi15_sol/

[0, 1] 区间内 n 次独立随机事件的一些问题的更多相关文章

  1. 浅谈[0,1]区间内的n个随机实数变量中增加偏序关系类题目的解法

    浅谈[0,1]区间内的n个随机实数变量中增加偏序关系类题目的解法 众所周知,把[0,1]区间内的n个随机.相互独立的实数变量\(x_i\)之间的大小关系写成一个排列\(\{p_i\}\),使得\(\f ...

  2. UVA 1640 The Counting Problem UVA1640 求[a,b]或者[b,a]区间内0~9在里面各个数的数位上出现的总次数。

    /** 题目:UVA 1640 The Counting Problem UVA1640 链接:https://vjudge.net/problem/UVA-1640 题意:求[a,b]或者[b,a] ...

  3. POJ 3252 区间内一个数的二进制中0的数量要不能少于1的数量(数位DP)

    题意:求区间内二进制中0的数量要不能少于1的数量 分析:很明显的是数位DP: 菜鸟me : 整体上是和数位dp模板差不多的 , 需要注意的是这里有前导零的影响 , 所以需要在dfs()里面增加zor ...

  4. hdu 4638 树状数组 区间内连续区间的个数(尽可能长)

    Group Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  5. hdu3437 划分树 区间内小于第K大的值得和

    Minimum Sum Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tot ...

  6. SPOJ 3267 D-query(离散化+主席树求区间内不同数的个数)

    DQUERY - D-query #sorting #tree English Vietnamese Given a sequence of n numbers a1, a2, ..., an and ...

  7. HDU 4417 Super Mario(主席树求区间内的区间查询+离散化)

    Super Mario Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  8. YTU 2986: 删除区间内的元素(线性表)

    2986: 删除区间内的元素(线性表) 时间限制: 1 Sec  内存限制: 2 MB 提交: 8  解决: 3 题目描述 若一个线性表L采用顺序存储结构,其中元素都为整数.设计一个算法,删除元素值在 ...

  9. 洛谷1440 求m区间内的最小值

    洛谷1440 求m区间内的最小值 本题地址:http://www.luogu.org/problem/show?pid=1440 题目描述 一个含有n项的数列(n<=2000000),求出每一项 ...

随机推荐

  1. dotnet core use RabbitMQ

    安装RabbitMQ 自从使用了Docker之后,发现Docker真的是比虚拟机好用啊, 因此我这里在Docker里面创建一个RabbitMQ容器. 这里注意获取镜像的时候要获取management版 ...

  2. simple config of webpack

    Demo1操作手册 本Demo演示进行简单配置的基本使用 准备环境 初始化环境, cd到demo目录之后, 执行如下命令: npm init -y npm install webpack webpac ...

  3. [转帖]AMD三代锐龙线程撕裂者命名曝光:24核心3960X

    AMD三代锐龙线程撕裂者命名曝光:24核心3960X https://www.cnbeta.com/articles/tech/900271.htm 一直搞不懂TDP啥意思 可能会高于TDP的功率.. ...

  4. 《Mysql - Mysql 是如何保证主备一致的?》

    一:Mysql 主备的基本原理? - 主备切换流程(M-S 架构) -  - 在状态 1 中,客户端的读写都直接访问节点 A,而节点 B 是 A 的备库,只是将 A 的更新都同步过来,到本地执行. - ...

  5. vue-scroller 滑动组件使用指南

    在页面中经常会用到滚动,下拉刷新,下拉加载等功能,vux的scroller可以使用,但是它不再维护,而且要配合load-more组件一起使用.所以一般在项目中我都是用vue-scroller. vue ...

  6. ubuntu mysql5.7设置Open Files Limit

    目的:解决Too many open files异常 方式:设置Open Files Limit 环境:(MySQL)Server version: 5.7.27-0ubuntu0.16.04.1 ( ...

  7. MySQL索引工作原理

    为什么需要索引(Why is it needed)?当数据保存在磁盘类存储介质上时,它是作为数据块存放.这些数据块是被当作一个整体来访问的,这样可以保证操作的原子性.硬盘数据块存储结构类似于链表,都包 ...

  8. Go语言学习笔记(10)——错误处理示例

    // 定义一个 DivideError 结构 type DivideError struct { dividee int divider int } // 实现 `error` 接口 func (de ...

  9. css 省略号的写法

    单行省略号 overflow: hidden; text-overflow:ellipsis; white-space: nowrap; width:500px; 多行省略号 overflow: hi ...

  10. JDK8源码解析 -- HashMap(一)

    最近一直在忙于项目开发的事情,没有时间去学习一些新知识,但用忙里偷闲的时间把jdk8的hashMap源码看完了,也做了详细的笔记,我会把一些重要知识点分享给大家.大家都知道,HashMap类型也是面试 ...