【转载】 AutoML相关论文
原文地址:
https://www.cnblogs.com/marsggbo/p/9308518.html
------------------------------------------------------------------------------------------------------------
本文为Awesome-AutoML-Papers的译文。
1、AutoML简介
Machine Learning几年来取得的不少可观的成绩,越来越多的学科都依赖于它。然而,这些成果都很大程度上取决于人类机器学习专家来完成如下工作:
- 数据预处理 Preprocess the data
- 选择合适的特征 Select appropriate features
- 选择合适的模型族 Select an appropriate model family
- 优化模型参数 Optimize model hyperparameters
- 模型后处理 Postprocess machine learning models
- 分析结果 Critically analyze the results obtained
随着大多数任务的复杂度都远超非机器学习专家的能力范畴,机器学习应用的不断增长使得人们对现成的机器学习方法有了极大的需求。因为这些现成的机器学习方法使用简单,并且不需要专业知识。我们将由此产生的研究领域称为机器学习的逐步自动化。
AutoML借鉴了机器学习的很多知识,主要包括:
- 贝叶斯优化 Bayesian optimization
- 结构化数据的大数据的回归模型 Regression models for structured data and big data
- 元学习 Meta learning
- 迁移学习 Transfer learning
- 组合优化 Combinatorial optimization.
2、目录
- Papers
- Tutorials
- Articles
- Slides
- Books
- Projects
- Prominent Researchers
Papers
Automated Feature Engineering
Expand Reduce
- 2017 | AutoLearn — Automated Feature Generation and Selection | Ambika Kaul, et al. | ICDM |
PDF - 2017 | One button machine for automating feature engineering in relational databases | Hoang Thanh Lam, et al. | arXiv |
PDF - 2016 | Automating Feature Engineering | Udayan Khurana, et al. | NIPS |
PDF - 2016 | ExploreKit: Automatic Feature Generation and Selection | Gilad Katz, et al. | ICDM |
PDF - 2015 | Deep Feature Synthesis: Towards Automating Data Science Endeavors | James Max Kanter, Kalyan Veeramachaneni | DSAA |
PDF
- 2017 | AutoLearn — Automated Feature Generation and Selection | Ambika Kaul, et al. | ICDM |
Hierarchical Organization of Transformations
- 2016 | Cognito: Automated Feature Engineering for Supervised Learning | Udayan Khurana, et al. | ICDMW |
PDF
- 2016 | Cognito: Automated Feature Engineering for Supervised Learning | Udayan Khurana, et al. | ICDMW |
Meta Learning
- 2017 | Learning Feature Engineering for Classification | Fatemeh Nargesian, et al. | IJCAI |
PDF
- 2017 | Learning Feature Engineering for Classification | Fatemeh Nargesian, et al. | IJCAI |
Reinforcement Learning
Evolutionary Algorithms
Local Search
- 2017 | Simple and Efficient Architecture Search for Convolutional Neural Networks | Thomoas Elsken, et al. | ICLR |
PDF
- 2017 | Simple and Efficient Architecture Search for Convolutional Neural Networks | Thomoas Elsken, et al. | ICLR |
Meta Learning
- 2016 | Learning to Optimize | Ke Li, Jitendra Malik | arXiv |
PDF
- 2016 | Learning to Optimize | Ke Li, Jitendra Malik | arXiv |
Reinforcement Learning
Transfer Learning
2017 | Learning Transferable Architectures for Scalable Image Recognition | Barret Zoph, et al. | arXiv |
PDFFrameworks
- 2017 | Google Vizier: A Service for Black-Box Optimization | Daniel Golovin, et al. | KDD |
PDF - 2017 | ATM: A Distributed, Collaborative, Scalable System for Automated Machine Learning | T. Swearingen, et al. | IEEE |
PDF 2015 | AutoCompete: A Framework for Machine Learning Competitions | Abhishek Thakur, et al. | ICML |
PDFHyperparameter Optimization
Bayesian Optimization
- 2016 | Bayesian Optimization with Robust Bayesian Neural Networks | Jost Tobias Springenberg, et al. | NIPS |
PDF - 2016 | Scalable Hyperparameter Optimization with Products of Gaussian Process Experts | Nicolas Schilling, et al. | PKDD |
PDF - 2016 | Taking the Human Out of the Loop: A Review of Bayesian Optimization | Bobak Shahriari, et al. | IEEE |
PDF - 2016 | Towards Automatically-Tuned Neural Networks | Hector Mendoza, et al. | JMLR |
PDF - 2016 | Two-Stage Transfer Surrogate Model for Automatic Hyperparameter Optimization | Martin Wistuba, et al. | PKDD |
PDF - 2015 | Efficient and Robust Automated Machine Learning |
PDF - 2015 | Hyperparameter Optimization with Factorized Multilayer Perceptrons | Nicolas Schilling, et al. | PKDD |
PDF - 2015 | Hyperparameter Search Space Pruning - A New Component for Sequential Model-Based Hyperparameter Optimization | Martin Wistua, et al. |
PDF - 2015 | Joint Model Choice and Hyperparameter Optimization with Factorized Multilayer Perceptrons | Nicolas Schilling, et al. | ICTAI |
PDF - 2015 | Learning Hyperparameter Optimization Initializations | Martin Wistuba, et al. | DSAA |
PDF - 2015 | Scalable Bayesian optimization using deep neural networks | Jasper Snoek, et al. | ACM |
PDF - 2015 | Sequential Model-free Hyperparameter Tuning | Martin Wistuba, et al. | ICDM |
PDF - 2013 | Auto-WEKA: Combined Selection and Hyperparameter Optimization of Classification Algorithms |
PDF - 2013 | Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures | J. Bergstra | JMLR |
PDF - 2012 | Practical Bayesian Optimization of Machine Learning Algorithms |
PDF - 2011 | Sequential Model-Based Optimization for General Algorithm Configuration(extended version) |
PDF
- 2016 | Bayesian Optimization with Robust Bayesian Neural Networks | Jost Tobias Springenberg, et al. | NIPS |
Evolutionary Algorithms
Lipschitz Functions
- 2017 | Global Optimization of Lipschitz functions | C´edric Malherbe, Nicolas Vayatis | arXiv |
PDF
- 2017 | Global Optimization of Lipschitz functions | C´edric Malherbe, Nicolas Vayatis | arXiv |
Local Search
- 2009 | ParamILS: An Automatic Algorithm Configuration Framework | Frank Hutter, et al. | JAIR |
PDF
- 2009 | ParamILS: An Automatic Algorithm Configuration Framework | Frank Hutter, et al. | JAIR |
Meta Learning
- 2008 | Cross-Disciplinary Perspectives on Meta-Learning for Algorithm Selection |
PDF
- 2008 | Cross-Disciplinary Perspectives on Meta-Learning for Algorithm Selection |
Particle Swarm Optimization
- 2017 | Particle Swarm Optimization for Hyper-parameter Selection in Deep Neural Networks | Pablo Ribalta Lorenzo, et al. | GECCO |
PDF - 2008 | Particle Swarm Optimization for Parameter Determination and Feature Selection of Support Vector Machines | Shih-Wei Lin, et al. | Expert Systems with Applications |
PDF
- 2017 | Particle Swarm Optimization for Hyper-parameter Selection in Deep Neural Networks | Pablo Ribalta Lorenzo, et al. | GECCO |
Random Search
Transfer Learning
- 2016 | Efficient Transfer Learning Method for Automatic Hyperparameter Tuning | Dani Yogatama, Gideon Mann | JMLR |
PDF - 2016 | Flexible Transfer Learning Framework for Bayesian Optimisation | Tinu Theckel Joy, et al. | PAKDD |
PDF - 2016 | Hyperparameter Optimization Machines | Martin Wistuba, et al. | DSAA |
PDF 2013 | Collaborative Hyperparameter Tuning | R´emi Bardenet, et al. | ICML |
PDFMiscellaneous
- 2016 | Efficient Transfer Learning Method for Automatic Hyperparameter Tuning | Dani Yogatama, Gideon Mann | JMLR |
- 2018 | Accelerating Neural Architecture Search using Performance Prediction | Bowen Baker, et al. | ICLR |
PDF 2017 | Automatic Frankensteining: Creating Complex Ensembles Autonomously | Martin Wistuba, et al. | SIAM |
PDF
Tutorials
Bayesian Optimization
2010 | A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning |
PDFMeta Learning
2008 | Metalearning - A Tutorial |
PDF
Articles
Bayesian Optimization
2016 | Bayesian Optimization for Hyperparameter Tuning |
LinkMeta Learning
- 2017 | Why Meta-learning is Crucial for Further Advances of Artificial Intelligence? |
Link 2017 | Learning to learn |
Link
Slides
Automated Feature Engineering
Automated Feature Engineering for Predictive Modeling | Udyan Khurana, etc al. |
PDFHyperparameter Optimization
Bayesian Optimization
- Bayesian Optimisation |
PDF A Tutorial on Bayesian Optimization for Machine Learning |
PDF
Books
Meta Learning
- 2009 | Metalearning - Applications to Data Mining | Springer |
PDF
Projects
- Advisor |
Python|Open Source|Code - auto-sklearn |
Python|Open Source|Code - Auto-WEKA |
Java|Open Source|Code - Hyperopt |
Python|Open Source|Code - Hyperopt-sklearn |
Python|Open Source|Code - SigOpt |
Python|Commercial|Link - SMAC3 |
Python|Open Source|Code - RoBO |
Python|Open Source|Code - BayesianOptimization |
Python|Open Source|Code - Scikit-Optimize |
Python|Open Source|Code - HyperBand |
Python|Open Source|Code - BayesOpt |
C++|Open Source|Code - Optunity |
Python|Open Source|Code - TPOT |
Python|Open Source|Code - ATM |
Python|Open Source|Code - Cloud AutoML |
Python|Commercial|Link - H2O |
Python|Commercial|Link - DataRobot |
Python|Commercial|Link - MLJAR |
Python|Commercial|Link - MateLabs |
Python|Commercial|Link
【转载】 AutoML相关论文的更多相关文章
- AutoML相关论文
本文为Awesome-AutoML-Papers的译文. 1.AutoML简介 Machine Learning几年来取得的不少可观的成绩,越来越多的学科都依赖于它.然而,这些成果都很大程度上取决于人 ...
- Kintinuous 相关论文 Volume Fusion 详解
近几个月研读了不少RGBD-SLAM的相关论文,Whelan的Volume Fusion系列文章的效果确实不错,而且开源代码Kintinuous结构清晰,易于编译和运行,故把一些学习时自己的理解和经验 ...
- sketch 相关论文
sketch 相关论文 Sketch Simplification We present a novel technique to simplify sketch drawings based on ...
- 转载:Nginx 相关介绍
转载自:https://www.cnblogs.com/wcwnina/p/8728391.html Nginx 相关介绍(Nginx是什么?能干嘛?) Nginx的产生 没有听过Nginx?那么 ...
- Neural ODE相关论文摘要翻译
*****仅供个人学习记录***** Neural Ordinary Differential Equations[2019] 论文地址:[1806.07366] Neural Ordinary Di ...
- [转载]Android相关开发网站
my: Android 开发官方文档国内镜像-踏得网: http://wear.techbrood.com/index.html 转载自: http://my.oschina.net/luforn/b ...
- ACL2016信息抽取与知识图谱相关论文掠影
实体关系推理与知识图谱补全 Unsupervised Person Slot Filling based on Graph Mining 作者:Dian Yu, Heng Ji 机构:Computer ...
- SDN网络虚拟化、资源映射等相关论文粗读
1. Control Plane Latency with SDN Network Hypervisors: The Cost of Virtualization 年份:2016 来源:IEEE NE ...
- 带状态论文粗读(三)[引用openstate的相关论文阅读]
一 文章名称:FLOWGUARD: Building Robust Firewalls for Software-Defined Networks 发表时间:2014 期刊来源:--- 解决问题: 一 ...
随机推荐
- Mysql安装与问题合集
下载mysql https://dev.mysql.com/downloads/mysql/ 下载历史版本 看这篇文章 https://www.cnblogs.com/reyinever/p/8551 ...
- selenium xpath定位方式整理
#xpath定位元素方法: /html/body/div[2] #绝对路径定位 #相对路径定位元素 //* #找到所有的元素 //input #找到input元素 //*[@*] #表示有属性的所有元 ...
- python实现查找算法
搜索是在一个项目集合中找到一个特定项目的算法过程.搜索通常的答案是真的或假的,因为该项目是否存在. 搜索的几种常见方法:顺序查找.二分法查找.二叉树查找.哈希查找 线性查找线性查找就是从头找到尾,直到 ...
- java中的AIO
AIO(异步非阻塞)AIO采用了Proactor模式,AIO与NIO的不同之处在于当AIO在进行读写操作时,不用先等通知,可直接调用相应的read/write方法,这两种方法均为异步的,对于读操作而言 ...
- vue 单向数据流
- Postgresql Useful SQL/Commands
Update records ' and a.subscriber_id=b.subscriber_id; Connections select count(*) from pg_stat_activ ...
- 12 | 为什么我的MySQL会“抖”一下?
平时的工作中,不知道你有没有遇到过这样的场景,一条SQL语句,正常执行的时候特别快,但是有时也不知道怎么回事,它就会变得特别慢,并且这样的场景很难复现,它不只随机,而且持续时间还很短. 看上去,这就像 ...
- Linux操作系统常用命令合集——第三篇-系统管理操作(25个命令)
1.whoami [命令作用] 显示当前登录有效用户名称 [命令语法] whoami [选项] [常用选项] 无 [参数说明] 用户名称 [命令示例] 显示当前登录有效用户名称 # whoam ...
- 2017.11.8 Noip2017 考前模拟赛
----------------------------------T1---------------------------------- ——>足球联赛 题目描述 巴蜀中学新一季的足球联赛开 ...
- Redis批量删除缓存数据
背景: 在使用redis中,经常会遇到批量删除缓存的情况,但是对于在客户端中,如果一个一个的删除key,则需要较长时间及相对麻烦,可以使用以下命令,批量删除缓存. 本地批量删除KEY: ./redis ...