【转载】 AutoML相关论文
原文地址:
https://www.cnblogs.com/marsggbo/p/9308518.html
------------------------------------------------------------------------------------------------------------
本文为Awesome-AutoML-Papers的译文。
1、AutoML简介
Machine Learning几年来取得的不少可观的成绩,越来越多的学科都依赖于它。然而,这些成果都很大程度上取决于人类机器学习专家来完成如下工作:
- 数据预处理 Preprocess the data
- 选择合适的特征 Select appropriate features
- 选择合适的模型族 Select an appropriate model family
- 优化模型参数 Optimize model hyperparameters
- 模型后处理 Postprocess machine learning models
- 分析结果 Critically analyze the results obtained
随着大多数任务的复杂度都远超非机器学习专家的能力范畴,机器学习应用的不断增长使得人们对现成的机器学习方法有了极大的需求。因为这些现成的机器学习方法使用简单,并且不需要专业知识。我们将由此产生的研究领域称为机器学习的逐步自动化。
AutoML借鉴了机器学习的很多知识,主要包括:
- 贝叶斯优化 Bayesian optimization
- 结构化数据的大数据的回归模型 Regression models for structured data and big data
- 元学习 Meta learning
- 迁移学习 Transfer learning
- 组合优化 Combinatorial optimization.
2、目录
- Papers
- Tutorials
- Articles
- Slides
- Books
- Projects
- Prominent Researchers
Papers
Automated Feature Engineering
Expand Reduce
- 2017 | AutoLearn — Automated Feature Generation and Selection | Ambika Kaul, et al. | ICDM |
PDF - 2017 | One button machine for automating feature engineering in relational databases | Hoang Thanh Lam, et al. | arXiv |
PDF - 2016 | Automating Feature Engineering | Udayan Khurana, et al. | NIPS |
PDF - 2016 | ExploreKit: Automatic Feature Generation and Selection | Gilad Katz, et al. | ICDM |
PDF - 2015 | Deep Feature Synthesis: Towards Automating Data Science Endeavors | James Max Kanter, Kalyan Veeramachaneni | DSAA |
PDF
- 2017 | AutoLearn — Automated Feature Generation and Selection | Ambika Kaul, et al. | ICDM |
Hierarchical Organization of Transformations
- 2016 | Cognito: Automated Feature Engineering for Supervised Learning | Udayan Khurana, et al. | ICDMW |
PDF
- 2016 | Cognito: Automated Feature Engineering for Supervised Learning | Udayan Khurana, et al. | ICDMW |
Meta Learning
- 2017 | Learning Feature Engineering for Classification | Fatemeh Nargesian, et al. | IJCAI |
PDF
- 2017 | Learning Feature Engineering for Classification | Fatemeh Nargesian, et al. | IJCAI |
Reinforcement Learning
Evolutionary Algorithms
Local Search
- 2017 | Simple and Efficient Architecture Search for Convolutional Neural Networks | Thomoas Elsken, et al. | ICLR |
PDF
- 2017 | Simple and Efficient Architecture Search for Convolutional Neural Networks | Thomoas Elsken, et al. | ICLR |
Meta Learning
- 2016 | Learning to Optimize | Ke Li, Jitendra Malik | arXiv |
PDF
- 2016 | Learning to Optimize | Ke Li, Jitendra Malik | arXiv |
Reinforcement Learning
Transfer Learning
2017 | Learning Transferable Architectures for Scalable Image Recognition | Barret Zoph, et al. | arXiv |
PDFFrameworks
- 2017 | Google Vizier: A Service for Black-Box Optimization | Daniel Golovin, et al. | KDD |
PDF - 2017 | ATM: A Distributed, Collaborative, Scalable System for Automated Machine Learning | T. Swearingen, et al. | IEEE |
PDF 2015 | AutoCompete: A Framework for Machine Learning Competitions | Abhishek Thakur, et al. | ICML |
PDFHyperparameter Optimization
Bayesian Optimization
- 2016 | Bayesian Optimization with Robust Bayesian Neural Networks | Jost Tobias Springenberg, et al. | NIPS |
PDF - 2016 | Scalable Hyperparameter Optimization with Products of Gaussian Process Experts | Nicolas Schilling, et al. | PKDD |
PDF - 2016 | Taking the Human Out of the Loop: A Review of Bayesian Optimization | Bobak Shahriari, et al. | IEEE |
PDF - 2016 | Towards Automatically-Tuned Neural Networks | Hector Mendoza, et al. | JMLR |
PDF - 2016 | Two-Stage Transfer Surrogate Model for Automatic Hyperparameter Optimization | Martin Wistuba, et al. | PKDD |
PDF - 2015 | Efficient and Robust Automated Machine Learning |
PDF - 2015 | Hyperparameter Optimization with Factorized Multilayer Perceptrons | Nicolas Schilling, et al. | PKDD |
PDF - 2015 | Hyperparameter Search Space Pruning - A New Component for Sequential Model-Based Hyperparameter Optimization | Martin Wistua, et al. |
PDF - 2015 | Joint Model Choice and Hyperparameter Optimization with Factorized Multilayer Perceptrons | Nicolas Schilling, et al. | ICTAI |
PDF - 2015 | Learning Hyperparameter Optimization Initializations | Martin Wistuba, et al. | DSAA |
PDF - 2015 | Scalable Bayesian optimization using deep neural networks | Jasper Snoek, et al. | ACM |
PDF - 2015 | Sequential Model-free Hyperparameter Tuning | Martin Wistuba, et al. | ICDM |
PDF - 2013 | Auto-WEKA: Combined Selection and Hyperparameter Optimization of Classification Algorithms |
PDF - 2013 | Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures | J. Bergstra | JMLR |
PDF - 2012 | Practical Bayesian Optimization of Machine Learning Algorithms |
PDF - 2011 | Sequential Model-Based Optimization for General Algorithm Configuration(extended version) |
PDF
- 2016 | Bayesian Optimization with Robust Bayesian Neural Networks | Jost Tobias Springenberg, et al. | NIPS |
Evolutionary Algorithms
Lipschitz Functions
- 2017 | Global Optimization of Lipschitz functions | C´edric Malherbe, Nicolas Vayatis | arXiv |
PDF
- 2017 | Global Optimization of Lipschitz functions | C´edric Malherbe, Nicolas Vayatis | arXiv |
Local Search
- 2009 | ParamILS: An Automatic Algorithm Configuration Framework | Frank Hutter, et al. | JAIR |
PDF
- 2009 | ParamILS: An Automatic Algorithm Configuration Framework | Frank Hutter, et al. | JAIR |
Meta Learning
- 2008 | Cross-Disciplinary Perspectives on Meta-Learning for Algorithm Selection |
PDF
- 2008 | Cross-Disciplinary Perspectives on Meta-Learning for Algorithm Selection |
Particle Swarm Optimization
- 2017 | Particle Swarm Optimization for Hyper-parameter Selection in Deep Neural Networks | Pablo Ribalta Lorenzo, et al. | GECCO |
PDF - 2008 | Particle Swarm Optimization for Parameter Determination and Feature Selection of Support Vector Machines | Shih-Wei Lin, et al. | Expert Systems with Applications |
PDF
- 2017 | Particle Swarm Optimization for Hyper-parameter Selection in Deep Neural Networks | Pablo Ribalta Lorenzo, et al. | GECCO |
Random Search
Transfer Learning
- 2016 | Efficient Transfer Learning Method for Automatic Hyperparameter Tuning | Dani Yogatama, Gideon Mann | JMLR |
PDF - 2016 | Flexible Transfer Learning Framework for Bayesian Optimisation | Tinu Theckel Joy, et al. | PAKDD |
PDF - 2016 | Hyperparameter Optimization Machines | Martin Wistuba, et al. | DSAA |
PDF 2013 | Collaborative Hyperparameter Tuning | R´emi Bardenet, et al. | ICML |
PDFMiscellaneous
- 2016 | Efficient Transfer Learning Method for Automatic Hyperparameter Tuning | Dani Yogatama, Gideon Mann | JMLR |
- 2018 | Accelerating Neural Architecture Search using Performance Prediction | Bowen Baker, et al. | ICLR |
PDF 2017 | Automatic Frankensteining: Creating Complex Ensembles Autonomously | Martin Wistuba, et al. | SIAM |
PDF
Tutorials
Bayesian Optimization
2010 | A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning |
PDFMeta Learning
2008 | Metalearning - A Tutorial |
PDF
Articles
Bayesian Optimization
2016 | Bayesian Optimization for Hyperparameter Tuning |
LinkMeta Learning
- 2017 | Why Meta-learning is Crucial for Further Advances of Artificial Intelligence? |
Link 2017 | Learning to learn |
Link
Slides
Automated Feature Engineering
Automated Feature Engineering for Predictive Modeling | Udyan Khurana, etc al. |
PDFHyperparameter Optimization
Bayesian Optimization
- Bayesian Optimisation |
PDF A Tutorial on Bayesian Optimization for Machine Learning |
PDF
Books
Meta Learning
- 2009 | Metalearning - Applications to Data Mining | Springer |
PDF
Projects
- Advisor |
Python|Open Source|Code - auto-sklearn |
Python|Open Source|Code - Auto-WEKA |
Java|Open Source|Code - Hyperopt |
Python|Open Source|Code - Hyperopt-sklearn |
Python|Open Source|Code - SigOpt |
Python|Commercial|Link - SMAC3 |
Python|Open Source|Code - RoBO |
Python|Open Source|Code - BayesianOptimization |
Python|Open Source|Code - Scikit-Optimize |
Python|Open Source|Code - HyperBand |
Python|Open Source|Code - BayesOpt |
C++|Open Source|Code - Optunity |
Python|Open Source|Code - TPOT |
Python|Open Source|Code - ATM |
Python|Open Source|Code - Cloud AutoML |
Python|Commercial|Link - H2O |
Python|Commercial|Link - DataRobot |
Python|Commercial|Link - MLJAR |
Python|Commercial|Link - MateLabs |
Python|Commercial|Link
【转载】 AutoML相关论文的更多相关文章
- AutoML相关论文
本文为Awesome-AutoML-Papers的译文. 1.AutoML简介 Machine Learning几年来取得的不少可观的成绩,越来越多的学科都依赖于它.然而,这些成果都很大程度上取决于人 ...
- Kintinuous 相关论文 Volume Fusion 详解
近几个月研读了不少RGBD-SLAM的相关论文,Whelan的Volume Fusion系列文章的效果确实不错,而且开源代码Kintinuous结构清晰,易于编译和运行,故把一些学习时自己的理解和经验 ...
- sketch 相关论文
sketch 相关论文 Sketch Simplification We present a novel technique to simplify sketch drawings based on ...
- 转载:Nginx 相关介绍
转载自:https://www.cnblogs.com/wcwnina/p/8728391.html Nginx 相关介绍(Nginx是什么?能干嘛?) Nginx的产生 没有听过Nginx?那么 ...
- Neural ODE相关论文摘要翻译
*****仅供个人学习记录***** Neural Ordinary Differential Equations[2019] 论文地址:[1806.07366] Neural Ordinary Di ...
- [转载]Android相关开发网站
my: Android 开发官方文档国内镜像-踏得网: http://wear.techbrood.com/index.html 转载自: http://my.oschina.net/luforn/b ...
- ACL2016信息抽取与知识图谱相关论文掠影
实体关系推理与知识图谱补全 Unsupervised Person Slot Filling based on Graph Mining 作者:Dian Yu, Heng Ji 机构:Computer ...
- SDN网络虚拟化、资源映射等相关论文粗读
1. Control Plane Latency with SDN Network Hypervisors: The Cost of Virtualization 年份:2016 来源:IEEE NE ...
- 带状态论文粗读(三)[引用openstate的相关论文阅读]
一 文章名称:FLOWGUARD: Building Robust Firewalls for Software-Defined Networks 发表时间:2014 期刊来源:--- 解决问题: 一 ...
随机推荐
- 【转】如何在TensorFlow中高效使用数据集
本文主要记录tensorflow一个比较好用的API:Dataset,feed-dict 是向 TensorFlow 传递信息最慢的方式,应该尽量避免使用.向模型提供数据的正确方式是使用输入管道,这样 ...
- 网站添加logo图片
网站添加log图片 第一种方法 这里使用的图片一般为16*16大小的图片 <link rel="shortcut icon" href="http://xxx.xx ...
- python_面向对象——类方法和静态方法
1.类方法不能访问实例变量,只能访问类变量. class Dog(object): name = 'wdc' def __init__(self,name): self.name = name def ...
- easyUI--入门实例
ui框架 1.需要导入的所有jar包,以及外部的类或文件 1.1导入jar包 1.2导入WebContent外部资源 1.3导入所有需要的辅助类--Util包 2.实例代码 2.1创建TreeNode ...
- sql server in和exists 的区别
如图,现在有两个数据集,左边表示#tempTable1,右边表示#tempTable2.现在有以下问题: 1.求两个集的交集? 2.求tempTable1中不属于集#tempTable2的集? 先 ...
- antd 表格隔行变色
rowClassName={(record, index) => { let className = 'light-row'; if (index % 2 === 1) className = ...
- 51nod 1434
首先可以得出一个性质:LCM(1,2,3,4,...,N-1,N) 中质因子k的出现的次数为t,则有k^t<=n 根据这个性质我们先筛出素数,然后枚举每个质数,求出对应的k和t,然后找出倍数j( ...
- (RE) luogu P3690 【模板】Link Cut Tree
二次联通门 : luogu P3690 [模板]Link Cut Tree 莫名RE第8个点....如果有dalao帮忙查错的话万分感激 #include <cstdio> #includ ...
- TensorFlow(二):基本概念以及练习
一:基本概念 1.使用图(graphs)来表示计算任务 2.在被称之为会话(Session)的上下文(context)中执行图 3.使用tensor表示数据 4.通过变量(Variable)维护状态 ...
- nodejs爬虫案例笔记
用nodeJs制作一个简单的网页爬虫 主要分为三个步骤,向目标请求数据,处理数据,打印数据.需要用到的模块有http,cheerio. 1.准备步骤,引入要使用的模块 2.向目标请求数据 http.g ...