题面

解析

step 1

我们先考虑下有人没有的情况吧,

那对于每个特产就是放隔板的情况了,

设\(a[i]\)为第\(i\)个特产的个数,

那么第\(i\)个特产的方案数就是\(C_{a[i]+n-1}^{n-1}\),(这个不解释了吧)

然后再根据乘法原理乘起来就行了:\(\prod_{i=1}^mC_{a[i]+n-1}^{n-1}\).

step 2

但是要求每个人都要分到啊.

而上面的式子是包含了有人没有的情况的.

所以我们容斥一下就好了.

设\(f[k]\)表示至少有\(k\)个人没有分到(也就是钦定\(k\)个人没有),

那么方案数就是\(f[k]=\prod_{i=1}^mC_{a[i]+n-k-1}^{n-k-1}\).

最后来一个容斥:\(ans=\sum_{k=0}^{n-1}(-1)^kC_n^kf[k]\),

组合数是因为可以任意钦定\(k\)个人没有.

code:

#include <iostream>
#include <cstdio>
#include <cstring>
#define ll long long
#define fre(x) freopen(x".in","r",stdin),freopen(x".out","w",stdout)
using namespace std; inline int read(){
int sum=0,f=1;char ch=getchar();
while(ch>'9' || ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0' && ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return f*sum;
} const int N=2001;
const int Mod=1000000007;
int n,m,a[N];
ll c[N][N];
ll f[N],ans; int main(){
n=read();m=read();
for(int i=0;i<N;i++) c[i][0]=1;
for(int i=1;i<N;i++)
for(int j=1;j<N;j++) c[i][j]=(c[i-1][j]+c[i-1][j-1])%Mod;
for(int i=1;i<=m;i++) a[i]=read();
for(int i=0;i<=n;i++) f[i]=1;
for(int i=0;i<n;i++)
for(int j=1;j<=m;j++) f[i]=(f[i]*c[a[j]+n-i-1][n-i-1])%Mod;
for(int i=0;i<n;i++) ans=(ans+c[n][i]*f[i]%Mod*((i&1)? -1:1))%Mod;
printf("%lld\n",(ans+Mod)%Mod);
return 0;
}

题解 [BZOJ4710] 分特产的更多相关文章

  1. 题解-JSOI2011 分特产

    题面 JSOI2011 分特产 有 \(n\) 个不同的盒子和 \(m\) 种不同的球,第 \(i\) 种球有 \(a_i\) 个,用光所有球,求使每个盒子不空的方案数. 数据范围:\(1\le n, ...

  2. Bzoj4710 分特产(容斥原理+组合数)

    题面 Bzoj 题解 考虑容斥原理,所有人都有特产的方案数等于: 至少零个人没有特产\(-\)至少一个人没有特产\(+\)至少两个人有特产\(-...\) 接着考虑其中一种情况怎么求(假设现在至少有\ ...

  3. BZOJ4710 分特产

    题目链接:戳我 容斥题. 设\(f[i]\)表示至多有i个人能够分到(也就是至少n-i个人分不到)的方案数 \(f[i]=\prod_{j=1}^mC_{a[j]+i-1}^i-1\) a[j]表示的 ...

  4. 【BZOJ4710】[JSOI2011]分特产(容斥)

    [BZOJ4710]分特产(容斥) 题面 BZOJ 题解 比较简单吧... 设\(f[i]\)表示至多有\(i\)个人拿到东西的方案数. \(f[i]=\prod_{j=1}^m C_{m+i-1}^ ...

  5. 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥

    [BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...

  6. bzoj4710: [Jsoi2011]分特产 组合+容斥

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 289  Solved: 198[Submit][Status] ...

  7. bzoj4710 [Jsoi2011]分特产(容斥)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 814  Solved: 527[Submit][Status] ...

  8. [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 395  Solved: 262[Submit][Status] ...

  9. ●BZOJ 4710 [Jsoi2011]分特产

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4710 题解: 容斥,组合先看看这个方案数的计算:把 M 个相同的东西分给 N 个人,每个人可 ...

随机推荐

  1. 【转帖】MBW内存测试

    MBW内存测试 https://www.cnblogs.com/dongdongwq/p/5431561.html 在测试前,理应了解本机所具备的特点,比如CPU频率.内存频率.内存大小,等等信息. ...

  2. [转帖]IBM 开源 POWER 指令集架构

    IBM 开源 POWER 指令集架构 https://www.solidot.org/story?sid=61791 新闻越短 事情越严重 IBM 破釜沉舟 OpenPOWER 联盟国产化披荆斩棘? ...

  3. LoadRunner编程之文件的操作

    这篇文章主要写下LoadRunner下如何进行文件的操作. 1,文件的声明 LoadRunner不支持FILE数据类型,所以在LoadRunner中用int来声明一个文件: int MyFile; 2 ...

  4. X86驱动:挂接SSDT内核钩子

    SSDT 中文名称为系统服务描述符表,该表的作用是将Ring3应用层与Ring0内核层,两者的API函数连接起来,起到承上启下的作用,SSDT并不仅仅只包含一个庞大的地址索引表,它还包含着一些其它有用 ...

  5. 社工工具包 SEToolkit

    社会工程学(Social Engineering)简称社工,其通过分析攻击对象的心理弱点,利用人性的本能反应,以及任何好奇心,贪婪等心理特征进行的,使用诸如假冒,欺骗,引诱等多种手段来达成攻击目标的一 ...

  6. Python 面向对象编程详解

    Python 的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程序,作为ABC语言的一种继承.Py ...

  7. 【php设计模式】组合模式

    定义: 是用于把一组相似的对象当作一个单一的对象.组合模式依据树形结构来组合对象,用来表示部分以及整体层次.这种类型的设计模式属于结构型模式,它创建了对象组的树形结构. 应用场景: 部分.整体场景,如 ...

  8. CentOS开机启动进度条卡死问题

    centos为例 一, 如下: 如果这个地方卡住了的话也许是你上次改了passwd文件,这个是其中一个情况. 如果刚刚开机就卡住了或者怎么卡住了的话在开机的读条时候摁esc显示读取的进程,根据显示的错 ...

  9. 四款免费好用的Bootstrap ui编辑器

    Bootstrap带来了设计革命,本文介绍的四种免费Bootstrap在线设计工具,可视化所见所得设计网页,然后输出Html/CSS代码,其中有些甚至可以实现拖曳,也有可以设定自己的主题模板Theme ...

  10. 【转】SpringBoot+SpringCloud实现登录用户信息在微服务之间的传递

    实现思路: 1:准备一个ThreadLocal变量,供线程之间共享. 2:每个微服务对所有过来的Feign调用进行过滤,然后从请求头中获取User用户信息,并存在ThreadLocal变量中. 3:每 ...