题目传送门(内部题100)


输入格式

  第一行两个整数$n,m$,接下来$m$行每行两个整数$u,v$表示一条$u$连向$v$的边。不保证没有重边和自环。


输出格式

  $n-1$行每行一个整数,第$i$行表示$k=i+1$时的答案。对$998244353$取模。


样例

样例输入:

3 6
1 1
1 2
2 1
2 2
1 3
3 1

样例输出:

4
5


数据范围与提示

数据范围:

  对于$25\%$的数据,$n\leqslant 50$。
  对于另外$20\%$的数据,前$m-1$条边满足$u<v$。
  对于另外$15\%$的数据,不存在$u,v$使得$u!=v$且$\min(u,v)>1$。
  对于$100\%$的数据,$1\leqslant n\leqslant 300,1\leqslant m\leqslant 10^5,1\leqslant u,v\leqslant n$。

提示:

  对于质数$p$和有理数$\frac{a}{b}(b\mod p>0)$,存在恰好一个整数$c$满足$0\leqslant c<p$且$a\equiv bc(\mod p)$,我们称$c$为$\frac{a}{b}$对$p$取模的结果。


题解

概率正着推,期望倒着推。

不妨设$f[i]$表示从$i$出发走到$k$的期望步数,那么可以列出式子:

$$f[i]=\sum \frac{f[j]}{du[i]}+1$$

$f[k]=0$

其中$j$是$i$的所有出边所能到达的点,$du[i]$则为$i$的出度。

那么枚举所有的$k$,然后暴力高斯消元即可拿到$25$分。

考虑优化,因为高斯消元中一段的值可以对很多$k$做贡献,所以我们可以用分治消元。

原理就是:对于区间$[l,r]$,先消$[mid+1,r]$,然后继续递归$[l,mid]$,递归之后再消$[l,mid]$,接着递归$[mid+1,r]$。

时间复杂度:$\Theta(n^3\log n)$。

期望得分:$100$分。

实际得分:$100$分。


代码时刻

#include<bits/stdc++.h>
using namespace std;
const int mod=998244353;
int n,m;
int du[301],top;
long long Map[301][302],ans[301];
long long qpow(long long x,long long y)
{
long long res=1;
while(y)
{
if(y&1)res=res*x%mod;
x=x*x%mod;y>>=1;
}
return res;
}
void gauss(int x,int l,int r)
{
long long inv=qpow(Map[x][x],mod-2);
for(int i=1;i<=n+1;i++)Map[x][i]=Map[x][i]*inv%mod;
for(int i=1;i<=n;i++)
{
if(i==x)continue;
long long flag=Map[i][x];
for(int j=l;j<=r;j++)
Map[i][j]=(Map[i][j]-Map[x][j]*flag)%mod;
Map[i][n+1]=(Map[i][n+1]-Map[x][n+1]*flag)%mod;
}
}
void solve(int l,int r)
{
if(l==r){ans[l]=(Map[1][n+1]+mod)%mod;return;}
int mid=(l+r)>>1;int wzc[301][302];
for(int i=1;i<=n;i++)
for(int j=1;j<=n+1;j++)
wzc[i][j]=Map[i][j];
for(int i=mid+1;i<=r;i++)gauss(i,l,r);
solve(l,mid);
for(int i=1;i<=n;i++)
for(int j=1;j<=n+1;j++)
Map[i][j]=wzc[i][j];
for(int i=l;i<=mid;i++)gauss(i,l,r);
solve(mid+1,r);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
Map[u][v]++;du[u]++;
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
Map[i][j]=Map[i][j]*qpow(du[i],mod-2)%mod;
Map[i][i]+=(Map[i][n+1]=-1);
}
solve(1,n);
for(int i=2;i<=n;i++)printf("%d\n",ans[i]);
}

rp++

[CSP-S模拟测试]:走路(期望DP+分治消元)的更多相关文章

  1. BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元

    BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机 ...

  2. HDU 2262 Where is the canteen 期望dp+高斯消元

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2262 Where is the canteen Time Limit: 10000/5000 MS ...

  3. hdu4418 Time travel 【期望dp + 高斯消元】

    题目链接 BZOJ4418 题解 题意:从一个序列上某一点开始沿一个方向走,走到头返回,每次走的步长各有概率,问走到一点的期望步数,或者无解 我们先将序列倍长形成循环序列,\(n = (N - 1) ...

  4. 【noi2019集训题1】 脑部进食 期望dp+高斯消元

    题目大意:有n个点,m条有向边,每条边上有一个小写字母. 有一个人从1号点开始在这个图上随机游走,游走过程中他会按顺序记录下走过的边上的字符. 如果在某个时刻,他记录下的字符串中,存在一个子序列和S2 ...

  5. LightOJ 1151 Snakes and Ladders 期望dp+高斯消元

    题目传送门 题目大意:10*10的地图,不过可以直接看成1*100的,从1出发,要到达100,每次走的步数用一个大小为6的骰子决定.地图上有很多个通道 A可以直接到B,不过A和B大小不确定   而且 ...

  6. P4457-[BJOI2018]治疗之雨【期望dp,高斯消元】

    正题 题目链接:https://www.luogu.com.cn/problem/P4457 题目大意 开始一个人最大生命值为\(n\),剩余\(hp\)点生命,然后每个时刻如果生命值没有满那么有\( ...

  7. ZJUT 1423 地下迷宫(期望DP&高斯消元)

    地下迷宫 Time Limit:1000MS  Memory Limit:32768K Description: 由于山体滑坡,DK被困在了地下蜘蛛王国迷宫.为了抢在DH之前来到TFT,DK必须尽快走 ...

  8. Codeforces.24D.Broken robot(期望DP 高斯消元)

    题目链接 可能这儿的会更易懂一些(表示不想再多写了). 令\(f[i][j]\)表示从\((i,j)\)到达最后一行的期望步数.那么有\(f[n][j]=0\). 若\(m=1\),答案是\(2(n- ...

  9. HDU4418 Time travel(期望dp 高斯消元)

    题意 题目链接 Sol mdzz这题真的太恶心了.. 首先不难看出这就是个高斯消元解方程的板子题 \(f[x] = \sum_{i = 1}^n f[to(x + i)] * p[i] + ave\) ...

随机推荐

  1. 用winform实现一个B/S代码更新打包工具

    一个.net程序员必须拥有的能力就是可以随时随地写出一个自己需要的小工具,于是记录一下我的个人工具吧. 新建一个窗体应用项目,代码如下: namespace 打包工具 { partial class ...

  2. 简单的todolist的demo

    放上代码: <!DOCTYPE html> <html lang="zh"> <head> <meta charset="UTF ...

  3. Wxpython pannel切换

    演示效果 实现panel切换思路 1.创建所有在某个区域需要切换面板对象,设置为None self.panel_Celan1 = None self.panel_Celan2 = None self. ...

  4. Nginx作为代理服务之正反代理

    Nginx作为代理服务之正反代理 首先什么是代理,就跟明星的经纪人类似,比如作为苍老师经纪人的我,如果你们需要和苍老师拍小电影,可以跟我这个经纪人来商量比如价格啊,时间等相关信息,那么我就作为一个代理 ...

  5. centos7 zookeeper集群的搭建

    说明:该集群的搭建是为了服务于solr集群,请参考我的关于solr集群搭建的博客. 1.创建solr-cloud目录 mkdir /usr/local/solr-cloud 2.将解压的apache- ...

  6. 第二章· MySQL体系结构管理

    一.客户端与服务器模型  1.mysql是一个典型的C/S服务结构 1.1 mysql自带的客户端程序(/application/mysql/bin) mysql mysqladmin mysqld ...

  7. Tomcat 7 简单定制

    Tomcat笔记 安装 wget https://mirrors.huaweicloud.com/apache/tomcat/tomcat-7/v7.0.96/bin/apache-tomcat-7. ...

  8. Linux之checkconfig 服务自启动

    chkconfig命令主要用来更新(启动或停止)和查询系统服务的运行级信息.谨记chkconfig不是立即自动禁止或激活一个服务,它只是简单的改变了符号连接. 使用语法: chkconfig [--a ...

  9. 安装WIN10+Ubuntu18.04安装教程(实测有效)

    转载原文链接:https://www.cnblogs.com/masbay/articles/10745170.html 安装过程中尤其注意分区时候的挂载点一定要选对!!!选择Ubuntu的EFI所在 ...

  10. webpack拷贝插件 copy-webpack-plugin

    copy-webpack-plugin 安装 npm install --save-dev copy-webpack-plugin 作用:在webpack中拷贝文件和文件夹 from 定义要拷贝的源文 ...