https://www.luogu.org/problem/P3986

很久很久以前,我好像写过exgcd,但是我已经忘了;

洛谷上搜EXGCD搜不到,要搜(扩展欧几里得)

这道题就是ax+by=k,其中ab为斐波那契数列里面相邻的两项;

a+b=k ;a+2b=k;2a+3b=k,3a+5b=k;

我们求解ax+by=k;

当x最小时,y最大,答案就是y/a向上取整;

因为y=(k-ax)/b;

{设此时的x为x0,则满足x=x0+tb,同理满足y=y0+ta,显然t+1就是此时的答案贡献,

那么用最大的y除以a向上取整即可(注意之所以要向上取整而不是t+1,

是因为避免y=0的情况,还有注意特判x0=0的情况)}(https://www.luogu.org/space/show?uid=24553)

#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
const int mo=1e9+;
ll f[],k;
ll x,y;
int cnt; void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b)
{
x=;y=;
return ;
}
exgcd(b,a%b,y,x);
y-=(a/b)*x;
} ll ans;
int main()
{
scanf("%lld",&k);
f[]=;f[]=;cnt=;
for(int i=;i<=;i++)
{
f[i]=f[i-]+f[i-];
if(f[i]>k) break;
++cnt;
}
for(int i=;i<=cnt;i++)
{
ll a=f[i-],b=f[i];
exgcd(a,b,x,y);
x*=k;//y*=k;
x=(x%b+b)%b;
if(x==) x=b;
y=(k-a*x)/b;
if(y<) continue;
ans=(ans+(y-)/a+)%mo;
}
printf("%lld",ans); return ;
}

P3986 斐波那契数列——数学(EXGCD)的更多相关文章

  1. [Luogu P3986] 斐波那契数列 (逆元)

    题面 传送门:https://www.luogu.org/problemnew/show/P3986 Solution 这是一道很有意思的数论题. 首先,我们可以发现直接枚举a和b会T的起飞. 接下来 ...

  2. P3986 斐波那契数列

    题目描述 定义一个数列: f(0)=a,f(1)=b,f(n)=f(n−1)+f(n−2) 其中 a,b均为正整数,n≥2 . 问有多少种 (a,b),使得 k 出现在这个数列里,且不是前两项. 由于 ...

  3. 【洛谷P1962 斐波那契数列】矩阵快速幂+数学推导

    来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_ ...

  4. 《BI那点儿事》Microsoft 时序算法——验证神奇的斐波那契数列

    斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10 ...

  5. ACM2 斐波那契数列

    描述 在数学上,斐波那契数列(Fibonacci Sequence),是以递归的方法来定义: F0 = 0 F1 = 1 Fn = Fn - 1 + Fn - 2 用文字来说,就是斐波那契数列由0和1 ...

  6. 关于斐波拉契数列(Fibonacci)

    斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10 ...

  7. 【每天一题ACM】 斐波那契数列(Fibonacci sequence)的实现

    最近因为一些原因需要接触一些ACM的东西,想想写个blog当作笔记吧!同时也给有需要的人一些参考 话不多说,关于斐波那契数列(Fibonacci sequence)不了解的同学可以看看百度百科之类的, ...

  8. php实现斐波那契数列以及由此引起的联想

    斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一 ...

  9. 九度OJ题目1387斐波那契数列

    /*斐波那契数列,又称黄金分割数列,指的是这样一个数列: 0.1.1.2.3.5.8.13.21.…… 在数学上,斐波纳契数列被定义如下: F0=0,F1=1, Fn=F(n-1)+F(n-2)(n& ...

随机推荐

  1. flume-ng version出现错误Error: Could not find or load main class org.apache.flume.tools.GetJavaPrope的解决办法

    错误: 找不到或无法加载主类 org.apache.flume.tools.GetJavaProperty或者Error: Could not find or load main class org. ...

  2. 3_PHP表达式_1_常量

    以下为学习孔祥盛主编的<PHP编程基础与实例教程>(第二版)所做的笔记. PHP常量分为自定义常量与预定义常量. 1.自定义常量 在使用前必须先定义,PHP的define()函数专门用于定 ...

  3. JavaScript 基础(数据类型、函数、流程控制、对象)

    一.JavaScript概述 1.1 JavaScript的历史 1992年Nombas开发出C-minus-minus(C--)的嵌入式脚本语言(最初绑定在CEnvi软件中).后将其改名Script ...

  4. MacOS X GateKeeper Bypass

    MacOS X GateKeeper Bypass OVERVIEW On MacOS X version <= 10.14.5 (at time of writing) is it possi ...

  5. 如何使用JavaScript开发AR(增强现实)移动应用 (一)

    本文封面配图是去年Jerry看的一部电影<异形:契约>的剧照. 所谓AR(Augmented Reality), 即增强现实,是一种将通过计算机渲染出的虚拟图像与真实世界巧妙融合的手段,背 ...

  6. 【OF框架】搭建标准工作环境

    前言 统一工作环境,统一工具集,是沟通效率的基础.如同语言一样,使用不同语言的人,需要花更多的精力去理解语言,然后才是理解语言的内容,而使用相同语言的人,对话过程直接进入到内容.对于语言不统一增加的效 ...

  7. DDD总览

    DDD总览 领域驱动设计(DDD)编码实践   目录 写在前面DDD总览实现业务的3种常见方式基于业务的分包领域模型的门面——应用服务业务的载体——聚合根实体 vs 值对象聚合根的家——资源库创生之柱 ...

  8. Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-E. Let Them Slide-思维+数据结构

    Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-E. Let Them Slide-思维+数据结构 [Problem ...

  9. maya pymel cmds ls 列出未知节点 unknown nodes

    maya pymel cmds ls 列出未知节点 unknown nodes cmds.ls(type = 'unknown',fl = 1)

  10. Ajax的简单例子——PHP

    PHP PHP是一种创建动态交互性站点的服务器端脚本语言 PHP能够生成动态页面内容 PHP能够创建.打开.读取.写入.删除以及关闭服务器上的文件 PHP能够接收表单数据 PHP能够发送并取回cook ...