P3986 斐波那契数列——数学(EXGCD)
https://www.luogu.org/problem/P3986
很久很久以前,我好像写过exgcd,但是我已经忘了;
洛谷上搜EXGCD搜不到,要搜(扩展欧几里得)
这道题就是ax+by=k,其中ab为斐波那契数列里面相邻的两项;
a+b=k ;a+2b=k;2a+3b=k,3a+5b=k;
我们求解ax+by=k;
当x最小时,y最大,答案就是y/a向上取整;
因为y=(k-ax)/b;
{设此时的x为x0,则满足x=x0+tb,同理满足y=y0+ta,显然t+1就是此时的答案贡献,
那么用最大的y除以a向上取整即可(注意之所以要向上取整而不是t+1,
是因为避免y=0的情况,还有注意特判x0=0的情况)}(https://www.luogu.org/space/show?uid=24553)
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
const int mo=1e9+;
ll f[],k;
ll x,y;
int cnt; void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b)
{
x=;y=;
return ;
}
exgcd(b,a%b,y,x);
y-=(a/b)*x;
} ll ans;
int main()
{
scanf("%lld",&k);
f[]=;f[]=;cnt=;
for(int i=;i<=;i++)
{
f[i]=f[i-]+f[i-];
if(f[i]>k) break;
++cnt;
}
for(int i=;i<=cnt;i++)
{
ll a=f[i-],b=f[i];
exgcd(a,b,x,y);
x*=k;//y*=k;
x=(x%b+b)%b;
if(x==) x=b;
y=(k-a*x)/b;
if(y<) continue;
ans=(ans+(y-)/a+)%mo;
}
printf("%lld",ans); return ;
}
P3986 斐波那契数列——数学(EXGCD)的更多相关文章
- [Luogu P3986] 斐波那契数列 (逆元)
题面 传送门:https://www.luogu.org/problemnew/show/P3986 Solution 这是一道很有意思的数论题. 首先,我们可以发现直接枚举a和b会T的起飞. 接下来 ...
- P3986 斐波那契数列
题目描述 定义一个数列: f(0)=a,f(1)=b,f(n)=f(n−1)+f(n−2) 其中 a,b均为正整数,n≥2 . 问有多少种 (a,b),使得 k 出现在这个数列里,且不是前两项. 由于 ...
- 【洛谷P1962 斐波那契数列】矩阵快速幂+数学推导
来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_ ...
- 《BI那点儿事》Microsoft 时序算法——验证神奇的斐波那契数列
斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10 ...
- ACM2 斐波那契数列
描述 在数学上,斐波那契数列(Fibonacci Sequence),是以递归的方法来定义: F0 = 0 F1 = 1 Fn = Fn - 1 + Fn - 2 用文字来说,就是斐波那契数列由0和1 ...
- 关于斐波拉契数列(Fibonacci)
斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10 ...
- 【每天一题ACM】 斐波那契数列(Fibonacci sequence)的实现
最近因为一些原因需要接触一些ACM的东西,想想写个blog当作笔记吧!同时也给有需要的人一些参考 话不多说,关于斐波那契数列(Fibonacci sequence)不了解的同学可以看看百度百科之类的, ...
- php实现斐波那契数列以及由此引起的联想
斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一 ...
- 九度OJ题目1387斐波那契数列
/*斐波那契数列,又称黄金分割数列,指的是这样一个数列: 0.1.1.2.3.5.8.13.21.…… 在数学上,斐波纳契数列被定义如下: F0=0,F1=1, Fn=F(n-1)+F(n-2)(n& ...
随机推荐
- 使用Android Studio遇到的问题
学校这课程安排没明白...又要写安卓了. 这里把使用Android Studio3.1时遇到的问题记录下. Android Studio无法启动模拟器 解决: 控制面板->程序->关闭Hy ...
- ivew数控件Tree自定义节点内容示例分析
ivew数控件Tree自定义节点内容示例分析 demo地址:https://run.iviewui.com/plcWlM4H <template> <Tree :data=" ...
- Pyhton模块和包
一 模块 1.1 什么是模块? 常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀. 但其实import加载的模块分为四个通用类别: 1 使用pytho ...
- 【转载】为什么我的网站加www是打不开的呢
在访问网站的过程中,我们发现有些网站访问不带www的主域名可以正常访问,反而访问加www的域名打不开,那为什么有的网站加www是打不开的呢?此情况很大可能是因为没有解析带www的域名记录或者主机Web ...
- JS定时器做物体运动
JS定时器是函数 setInterval(函数体/函数名 , 时间) 清楚定时器 clearInterval(函数) 时间单位(毫秒) 1000毫秒 = 1秒 首先我们要知道用JS定时器能干什么? ...
- stm32 CAN通信 TJA1040
CAN协议特点 1.多主控制 所有单元都可以发送消息,根据标识符(Identifier简称ID)决定优先级.仲裁获胜(被判定为优先级最高)的单元可继续发送消息,仲裁失利的单元则立刻停止发送而进行接收工 ...
- LVS实现健康性检查功能
LVS高可用性 Director不可用,整个系统将不可用:SPoF Single Point of Failure 解决方案:高可用 keepalived heartbeat/corosync 某RS ...
- RHEL/CentOS/Fedora各种源(EPEL、Remi、RPMForge、RPMFusion)
参考:RHEL/CentOS/Fedora各种源(EPEL.Remi.RPMForge.RPMFusion)配置 简介 CentOS 默认自带 CentOS-Base.repo 源, 但官方源中去除了 ...
- Python中type()详解:动态创建类
众所周知: type()函数可以查看变量的类型: 先看一个简单的列子来看一下type查看变量类型 class Animal(): pass a=Animal() print(type(a)) prin ...
- JS知识体系【JQ】附加理论+视频地址铺助学习
理论部分:https://www.jianshu.com/p/e10792076c6e //不吃鱼的猫_8e95---简书平台 https://www.cnblogs.com/hongqin/p/5 ...