导语:其他集数可在[线性代数]标籤文章找到。线性子空间是一个大课题,这里先提供一个简单的入门,承接先前关于矩阵代数的讨论,期待与你的交流。

Overview: Subspace definition

In a vector space of Rn, sets of vectors spanning a volume EQUAL TO OR SMALLER THAN that of Rn form subspaces of that vector space of Rn. A subset H of Rn is defined as follow:

  1. Zero vector included in H
  2. Subspace spanned by H closed under addition and scalar multiplication

Sketch of proof of property(1): H=Span{v1, v2, v3}, if weights to every columns in H equals to 0, we get a zero vector. If, for all possible linear combinations of H, zero vector is not involved, span of H is not a subspace of Rn. It must belong to another vector space Rx, whose zero vector is included by the span of H. If, for the following, let Q={u,v} be a subspace of Rn and L={z} be a subspace of Rx. L does not contain zero vector in Rn thus not a subspace of Rn.

Column space, Null space

Column space of a matrix A, i.e. Col A, refers to span of columns in A, i.e. all the possible linear combinations of pivot columns in A. (Recall non-pivot columns are simply linear combinations of other pivot columns, so they do not matter in spanning.) Alternatively, it refers to all the possible b where Ax=b is consistent, as illustrated follows:

Nul A, on another hand, refers to the spanning from all possible solutions for Ax=0. Recall when x=0, it is the trivial solution to homogeneous equation. Thus, automatically satisfy requirement (1) in the definition of subspace. The dimension of non-trivial solution must equal to number of columns in A, so the resultant vector would also be 0, satisfying the right-hand side of the equation. For instance, if A is an mxn matrix, Nul(A) must be a subspace for Rn.

Both Col(A) and Nul(A) are subspaces which contain infinitely many vectors in a set, most of them are just the linear combination of few key vectors, the basis vectors. Basis vectors are the most simplified set of linearly independent vectors representing a subspace, as the linear combination of all vectors inside regenerate the subspace. A standard basis is shown below:

There exists some interesting relationship between finding the BASIS for null space and column space for the same matrix A. Take the following matrices as examples. To find Nul(A), simply row reduce it into row echelon form and solve for x, which should automatically generate a set of linearly independent vectors from the FREE variables. To find Col(A), we just need to find the linearly independent vectors in matrix A. In words, whenever an elementary row operation is applied on A, we get a new echelon form. Each of them has its own basis set for their column space. It has great implication, as we know row operations generate new column space from its set of linearly independent columns in the matrix.

Dimension and rank

Dimension refers to the number of vectors in Nul(A) or Col(A), but rank only refers to that in Col(A). Weights assigned to each linearly independent vector within the basis are called coordinates, which is an ordered set of weights to vectors within basis. Given vectors in basis linearly independent, there's only one way for them to generate each 'point' within the corresponding subspace they span. Thus, dimensionality simply refers to number of coordinates/weights to a vector set, thus also refers to the number of vectors within the set. Noted that dimension need not equal to the dimension of Rn. For example, the following shows a two-dimensional subspace of R3, where the subspace only has a dimension of 2. Recalled that since the dimension here is 2, where 2!=3, thus, the basis vector of this set do not span R3. The spanning of vectors in subspace can become a subspace of R3 as each of them is also a three-dimensional vector.

As we have witnessed that Nul(A) comes from free variables while Col(A) comes from basic variables, the number of columns in a matrix A is inferred as follow:

To form a basis for a p-dimensional subspace is simple. Simply pick any p linearly independent vectors from the space will give you a basis for the subspace

Invertibility

All discussion above can be generalized into the invertible matrix theorem covered in earlier posts. Suppose A is an nxn matrix, all of the followings implies A is invertible.

Above basically states that, for a nxn matrix, if it spans Rn, then it must be invertible. And the rules above suggest how to determine if a nxn matrix contains no linearly dependent columns from their rank and dimension. Nothing new.

Examples

(More to come…stay tuned…)

[线性代数] 线性子空间入門 Basic Vector Subspaces的更多相关文章

  1. Delphi APP 開發入門(一)重生的 Delphi

    Delphi APP 開發入門(一)重生的 Delphi 分享: Share on facebookShare on twitterShare on google_plusone_share   閲讀 ...

  2. 依賴注入入門——Unity(二)

    參考博客文章http://www.cnblogs.com/kebixisimba/category/130432.html http://www.cnblogs.com/qqlin/tag/Unity ...

  3. GOOGLE搜索從入門到精通V4.0

    1,前言2,摘要3,如何使用本文4,Google簡介5,搜索入門6,初階搜索 6.1,搜索結果要求包含兩個及兩個以上關鍵字 6.2,搜索結果要求不包含某些特定資訊 6.3,搜索結果至少包含多個關鍵字中 ...

  4. Flask從入門到入土(三)——模板

    模板是一個包含響應文本的文件,其中包含佔位變量表示的動態部分,其具體值只是請求上下文中才能知道.使用真實值替換變量,再返回最終得到的響應字符串,這一過程稱爲渲染.爲了渲染模板,Flask使用了一個名爲 ...

  5. Windows PowerShell 入門(7)-関数編2

    この連載では.Microsoftが提供している新しいシェル.Windows Power Shellの使い方を解説します.前回に引き続きPowerShellにおける関数の取り扱いとして.変数と関数のスコ ...

  6. Windows PowerShell 入門(3)-スクリプト編

    これまでの記事 Windows PowerShell 入門(1)-基本操作編 Windows PowerShell 入門(2)-基本操作編 2 対象読者 Windows PowerShellでコマンド ...

  7. Windows PowerShell 入門(2)-基本操作編 2

    前回に引き続きMicrosoftが提供している新しいシェル.Windows Power Shellの基本操作方法を学びます.基本操作編第2弾の今回は.パイプの使用方法を中心としたコマンドレットの操作方 ...

  8. Delphi APP 開發入門(四)簡易手電筒

    Delphi APP 開發入門(四)簡易手電筒 分享: Share on facebookShare on twitterShare on google_plusone_share   閲讀次數:32 ...

  9. Delphi APP 開發入門(六)Object Pascal 語法初探

    Delphi APP 開發入門(六)Object Pascal 語法初探 分享: Share on facebookShare on twitterShare on google_plusone_sh ...

随机推荐

  1. 在论坛中出现的比较难的sql问题:29(row_number函数 组内某列的值连续出现3次标记出来)

    原文:在论坛中出现的比较难的sql问题:29(row_number函数 组内某列的值连续出现3次标记出来) 在论坛中,遇到了不少比较难的sql问题,虽然自己都能解决,但发现过几天后,就记不起来了,也忘 ...

  2. [转载]Python 包管理工具

    [转载]Python 包管理工具 最近由于机缘巧合,使用各种方法安装了一些Python包,所以对Python的包管理开始感兴趣.在网上找到一篇很好的文章:https://blog.zengrong.n ...

  3. NodeList和HTMLCollection区别

    关于DOM集合接口,主要不同在于HTMLCollection是元素集合而NodeList是节点集合(既包括元素,也包括节点). 规定一下结果是: . node.childNodes 结果返回类型是 N ...

  4. jquery input file 多图上传,单张删除,查看

    <div class="form-group"> <label for="imgs" class="col-md-3 col-sm- ...

  5. python简单页面爬虫入门 BeautifulSoup实现

    本文可快速搭建爬虫环境,并实现简单页面解析 1.安装 python 下载地址:https://www.python.org/downloads/ 选择对应版本,常用版本有2.7.3.4 安装后,将安装 ...

  6. SAP云平台上的ABAP编程环境里如何消费第三方服务

    在ABAP On-Premises环境下,使用ABAP编程消费第三方服务,相信很多ABAP顾问都已经非常熟悉了,无非就是使用CL_HTTP_CLIENT或者CL_REST_HTTP_CLIENT来发送 ...

  7. Linux日志查看

    Linux日志查看: 1.Last -a 把从何处登入系统的主机名称或IP地址,显示在最后一行.-d 指定记录文件.指定记录文件.将IP地址转换成主机名称.-f <记录文件>  指定记录文 ...

  8. linux uniq命令用法

    uniq命令: 对指定的ASCII文件或标准输入进行唯一性检查,以判断文本文件中重复出现的行,常用于分析日志:查看tcp各个状态连接数,ip或域名连接数排名等等场景,一般与 sort 命令结合使用. ...

  9. JAVA 判断给定目录的大小

    题目:给定一个目录,判断该目录的大小,单位为G 思路: 递归拿到目录的子文件,然后取长度,累加 public class FileDemo02 { public static void main(St ...

  10. 运维开发笔记整理-使用Django编写helloworld

    运维开发笔记整理-使用Django编写helloworld 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.   一.创建Django项目 1>.创建Django项目 djang ...