[线性代数] 线性子空间入門 Basic Vector Subspaces
导语:其他集数可在[线性代数]标籤文章找到。线性子空间是一个大课题,这里先提供一个简单的入门,承接先前关于矩阵代数的讨论,期待与你的交流。
Overview: Subspace definition
In a vector space of Rn, sets of vectors spanning a volume EQUAL TO OR SMALLER THAN that of Rn form subspaces of that vector space of Rn. A subset H of Rn is defined as follow:
- Zero vector included in H
- Subspace spanned by H closed under addition and scalar multiplication
Sketch of proof of property(1): H=Span{v1, v2, v3}, if weights to every columns in H equals to 0, we get a zero vector. If, for all possible linear combinations of H, zero vector is not involved, span of H is not a subspace of Rn. It must belong to another vector space Rx, whose zero vector is included by the span of H. If, for the following, let Q={u,v} be a subspace of Rn and L={z} be a subspace of Rx. L does not contain zero vector in Rn thus not a subspace of Rn.

Column space, Null space
Column space of a matrix A, i.e. Col A, refers to span of columns in A, i.e. all the possible linear combinations of pivot columns in A. (Recall non-pivot columns are simply linear combinations of other pivot columns, so they do not matter in spanning.) Alternatively, it refers to all the possible b where Ax=b is consistent, as illustrated follows:

Nul A, on another hand, refers to the spanning from all possible solutions for Ax=0. Recall when x=0, it is the trivial solution to homogeneous equation. Thus, automatically satisfy requirement (1) in the definition of subspace. The dimension of non-trivial solution must equal to number of columns in A, so the resultant vector would also be 0, satisfying the right-hand side of the equation. For instance, if A is an mxn matrix, Nul(A) must be a subspace for Rn.
Both Col(A) and Nul(A) are subspaces which contain infinitely many vectors in a set, most of them are just the linear combination of few key vectors, the basis vectors. Basis vectors are the most simplified set of linearly independent vectors representing a subspace, as the linear combination of all vectors inside regenerate the subspace. A standard basis is shown below:

There exists some interesting relationship between finding the BASIS for null space and column space for the same matrix A. Take the following matrices as examples. To find Nul(A), simply row reduce it into row echelon form and solve for x, which should automatically generate a set of linearly independent vectors from the FREE variables. To find Col(A), we just need to find the linearly independent vectors in matrix A. In words, whenever an elementary row operation is applied on A, we get a new echelon form. Each of them has its own basis set for their column space. It has great implication, as we know row operations generate new column space from its set of linearly independent columns in the matrix.

Dimension and rank
Dimension refers to the number of vectors in Nul(A) or Col(A), but rank only refers to that in Col(A). Weights assigned to each linearly independent vector within the basis are called coordinates, which is an ordered set of weights to vectors within basis. Given vectors in basis linearly independent, there's only one way for them to generate each 'point' within the corresponding subspace they span. Thus, dimensionality simply refers to number of coordinates/weights to a vector set, thus also refers to the number of vectors within the set. Noted that dimension need not equal to the dimension of Rn. For example, the following shows a two-dimensional subspace of R3, where the subspace only has a dimension of 2. Recalled that since the dimension here is 2, where 2!=3, thus, the basis vector of this set do not span R3. The spanning of vectors in subspace can become a subspace of R3 as each of them is also a three-dimensional vector.

As we have witnessed that Nul(A) comes from free variables while Col(A) comes from basic variables, the number of columns in a matrix A is inferred as follow:

To form a basis for a p-dimensional subspace is simple. Simply pick any p linearly independent vectors from the space will give you a basis for the subspace
Invertibility
All discussion above can be generalized into the invertible matrix theorem covered in earlier posts. Suppose A is an nxn matrix, all of the followings implies A is invertible.

Above basically states that, for a nxn matrix, if it spans Rn, then it must be invertible. And the rules above suggest how to determine if a nxn matrix contains no linearly dependent columns from their rank and dimension. Nothing new.
Examples
(More to come…stay tuned…)
[线性代数] 线性子空间入門 Basic Vector Subspaces的更多相关文章
- Delphi APP 開發入門(一)重生的 Delphi
Delphi APP 開發入門(一)重生的 Delphi 分享: Share on facebookShare on twitterShare on google_plusone_share 閲讀 ...
- 依賴注入入門——Unity(二)
參考博客文章http://www.cnblogs.com/kebixisimba/category/130432.html http://www.cnblogs.com/qqlin/tag/Unity ...
- GOOGLE搜索從入門到精通V4.0
1,前言2,摘要3,如何使用本文4,Google簡介5,搜索入門6,初階搜索 6.1,搜索結果要求包含兩個及兩個以上關鍵字 6.2,搜索結果要求不包含某些特定資訊 6.3,搜索結果至少包含多個關鍵字中 ...
- Flask從入門到入土(三)——模板
模板是一個包含響應文本的文件,其中包含佔位變量表示的動態部分,其具體值只是請求上下文中才能知道.使用真實值替換變量,再返回最終得到的響應字符串,這一過程稱爲渲染.爲了渲染模板,Flask使用了一個名爲 ...
- Windows PowerShell 入門(7)-関数編2
この連載では.Microsoftが提供している新しいシェル.Windows Power Shellの使い方を解説します.前回に引き続きPowerShellにおける関数の取り扱いとして.変数と関数のスコ ...
- Windows PowerShell 入門(3)-スクリプト編
これまでの記事 Windows PowerShell 入門(1)-基本操作編 Windows PowerShell 入門(2)-基本操作編 2 対象読者 Windows PowerShellでコマンド ...
- Windows PowerShell 入門(2)-基本操作編 2
前回に引き続きMicrosoftが提供している新しいシェル.Windows Power Shellの基本操作方法を学びます.基本操作編第2弾の今回は.パイプの使用方法を中心としたコマンドレットの操作方 ...
- Delphi APP 開發入門(四)簡易手電筒
Delphi APP 開發入門(四)簡易手電筒 分享: Share on facebookShare on twitterShare on google_plusone_share 閲讀次數:32 ...
- Delphi APP 開發入門(六)Object Pascal 語法初探
Delphi APP 開發入門(六)Object Pascal 語法初探 分享: Share on facebookShare on twitterShare on google_plusone_sh ...
随机推荐
- elk docker-compose
version: '3.1' services: elasticsearch: image: docker.elastic.co/elasticsearch/elasticsearch:6.2.4 c ...
- Django学习笔记 (一) 开发环境配置
Django是一个开放源代码的Web应用框架,由Python写成. 采用了MVC的软件设计模式,即模型M,视图V和控制器C. 1. Python安装 下载地址: http://www.python.o ...
- python day2:python的基本数据类型及其方法
目录 python day2 1. 编码转换 2. python的基本数据类型 3. for 迭代遍历 4. 列表list 5. 元组tuple 6. 字典dict 7. 枚举enumerate 8. ...
- java保证多线程的执行顺序
1. java多线程环境中,如何保证多个线程按指定的顺序执行呢? 1.1 通过thread的join方法保证多线程的顺序执行, wait是让主线程等待 比如一个main方法里面先后运行thread1, ...
- iOS 数据源切换混乱问题
问题场景 这个问题遇到是偶然的,正常来说是不会出现的.但是有时候在一些极端操作情况下,还是出现了. 现在我说明下这个场景.页面上是一个tableview,那对应的有一个dataSource,页面顶部有 ...
- oracle concepts学习
祭图一张!!!
- 解析CentOS 7中系统文件与目录管理
Linux目录结构 Linux目录结构是树形的目录结构 根目录 所有分区.目录.文件等的位置起点 整个树形目录结构中,使用独立的一个"/"表示 常见的子目录 目录 目录名称 目录 ...
- [Jenkins][centos]1 持续集成 之 配置VNC,部署Jenkins
痛点:上一篇的AWS部署的VNC不知为啥挂了,死活连不上,因此改申请京东云做部署Jenkins 预计阅读时间:20分钟 更新软件,安装桌面 yum -y update yum -y groupinst ...
- LearnOpenGL学习笔记(一)画个三角形
开始学习OpenGL,参考的是著名的LearnOpenGL这个网站,在这里做一些总结性的记录,只是方便自己日后查找或者记录自己的一些拓展思考,关于OpenGL的具体内容请移步: https://lea ...
- unity和lua开发游戏常备技能
推荐阅读: 我的CSDN 我的博客园 QQ群:704621321 我的个人博客 一.使用制作滑动列表:使用UILayout做虚拟列表 ui.list = base:findcom(" ...