导语:其他集数可在[线性代数]标籤文章找到。线性子空间是一个大课题,这里先提供一个简单的入门,承接先前关于矩阵代数的讨论,期待与你的交流。

Overview: Subspace definition

In a vector space of Rn, sets of vectors spanning a volume EQUAL TO OR SMALLER THAN that of Rn form subspaces of that vector space of Rn. A subset H of Rn is defined as follow:

  1. Zero vector included in H
  2. Subspace spanned by H closed under addition and scalar multiplication

Sketch of proof of property(1): H=Span{v1, v2, v3}, if weights to every columns in H equals to 0, we get a zero vector. If, for all possible linear combinations of H, zero vector is not involved, span of H is not a subspace of Rn. It must belong to another vector space Rx, whose zero vector is included by the span of H. If, for the following, let Q={u,v} be a subspace of Rn and L={z} be a subspace of Rx. L does not contain zero vector in Rn thus not a subspace of Rn.

Column space, Null space

Column space of a matrix A, i.e. Col A, refers to span of columns in A, i.e. all the possible linear combinations of pivot columns in A. (Recall non-pivot columns are simply linear combinations of other pivot columns, so they do not matter in spanning.) Alternatively, it refers to all the possible b where Ax=b is consistent, as illustrated follows:

Nul A, on another hand, refers to the spanning from all possible solutions for Ax=0. Recall when x=0, it is the trivial solution to homogeneous equation. Thus, automatically satisfy requirement (1) in the definition of subspace. The dimension of non-trivial solution must equal to number of columns in A, so the resultant vector would also be 0, satisfying the right-hand side of the equation. For instance, if A is an mxn matrix, Nul(A) must be a subspace for Rn.

Both Col(A) and Nul(A) are subspaces which contain infinitely many vectors in a set, most of them are just the linear combination of few key vectors, the basis vectors. Basis vectors are the most simplified set of linearly independent vectors representing a subspace, as the linear combination of all vectors inside regenerate the subspace. A standard basis is shown below:

There exists some interesting relationship between finding the BASIS for null space and column space for the same matrix A. Take the following matrices as examples. To find Nul(A), simply row reduce it into row echelon form and solve for x, which should automatically generate a set of linearly independent vectors from the FREE variables. To find Col(A), we just need to find the linearly independent vectors in matrix A. In words, whenever an elementary row operation is applied on A, we get a new echelon form. Each of them has its own basis set for their column space. It has great implication, as we know row operations generate new column space from its set of linearly independent columns in the matrix.

Dimension and rank

Dimension refers to the number of vectors in Nul(A) or Col(A), but rank only refers to that in Col(A). Weights assigned to each linearly independent vector within the basis are called coordinates, which is an ordered set of weights to vectors within basis. Given vectors in basis linearly independent, there's only one way for them to generate each 'point' within the corresponding subspace they span. Thus, dimensionality simply refers to number of coordinates/weights to a vector set, thus also refers to the number of vectors within the set. Noted that dimension need not equal to the dimension of Rn. For example, the following shows a two-dimensional subspace of R3, where the subspace only has a dimension of 2. Recalled that since the dimension here is 2, where 2!=3, thus, the basis vector of this set do not span R3. The spanning of vectors in subspace can become a subspace of R3 as each of them is also a three-dimensional vector.

As we have witnessed that Nul(A) comes from free variables while Col(A) comes from basic variables, the number of columns in a matrix A is inferred as follow:

To form a basis for a p-dimensional subspace is simple. Simply pick any p linearly independent vectors from the space will give you a basis for the subspace

Invertibility

All discussion above can be generalized into the invertible matrix theorem covered in earlier posts. Suppose A is an nxn matrix, all of the followings implies A is invertible.

Above basically states that, for a nxn matrix, if it spans Rn, then it must be invertible. And the rules above suggest how to determine if a nxn matrix contains no linearly dependent columns from their rank and dimension. Nothing new.

Examples

(More to come…stay tuned…)

[线性代数] 线性子空间入門 Basic Vector Subspaces的更多相关文章

  1. Delphi APP 開發入門(一)重生的 Delphi

    Delphi APP 開發入門(一)重生的 Delphi 分享: Share on facebookShare on twitterShare on google_plusone_share   閲讀 ...

  2. 依賴注入入門——Unity(二)

    參考博客文章http://www.cnblogs.com/kebixisimba/category/130432.html http://www.cnblogs.com/qqlin/tag/Unity ...

  3. GOOGLE搜索從入門到精通V4.0

    1,前言2,摘要3,如何使用本文4,Google簡介5,搜索入門6,初階搜索 6.1,搜索結果要求包含兩個及兩個以上關鍵字 6.2,搜索結果要求不包含某些特定資訊 6.3,搜索結果至少包含多個關鍵字中 ...

  4. Flask從入門到入土(三)——模板

    模板是一個包含響應文本的文件,其中包含佔位變量表示的動態部分,其具體值只是請求上下文中才能知道.使用真實值替換變量,再返回最終得到的響應字符串,這一過程稱爲渲染.爲了渲染模板,Flask使用了一個名爲 ...

  5. Windows PowerShell 入門(7)-関数編2

    この連載では.Microsoftが提供している新しいシェル.Windows Power Shellの使い方を解説します.前回に引き続きPowerShellにおける関数の取り扱いとして.変数と関数のスコ ...

  6. Windows PowerShell 入門(3)-スクリプト編

    これまでの記事 Windows PowerShell 入門(1)-基本操作編 Windows PowerShell 入門(2)-基本操作編 2 対象読者 Windows PowerShellでコマンド ...

  7. Windows PowerShell 入門(2)-基本操作編 2

    前回に引き続きMicrosoftが提供している新しいシェル.Windows Power Shellの基本操作方法を学びます.基本操作編第2弾の今回は.パイプの使用方法を中心としたコマンドレットの操作方 ...

  8. Delphi APP 開發入門(四)簡易手電筒

    Delphi APP 開發入門(四)簡易手電筒 分享: Share on facebookShare on twitterShare on google_plusone_share   閲讀次數:32 ...

  9. Delphi APP 開發入門(六)Object Pascal 語法初探

    Delphi APP 開發入門(六)Object Pascal 語法初探 分享: Share on facebookShare on twitterShare on google_plusone_sh ...

随机推荐

  1. Nacos笔记01——使用Nacos作为SpringCloud项目的服务注册中心

    前言 刚学SpringCloud时使用eureka作为服务注册中心,随着网飞公司eureka2.x不再更新,以及最近在公司实习接触到的SpringCloud项目是使用Nacos来做服务注册中心的,所以 ...

  2. jQuery遍历(1)

    jQuery 遍历,意为“移动”,用于根据其相对于其他元素的关系来“查找”(或选取)HTML 元素.以某项选择开始,并沿着这个选择移动,直到抵达您期望的元素为止. 图示解释: 举例: jQuery p ...

  3. SMARTY的知识

    smarty的原理: <?php class Smarty { $ldelimiter = "{";//左分隔符 $rdelimiter = "}";// ...

  4. English-培训1-Phonetic symbols

  5. C#-FileHelper

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  6. yum nginx最新版安装

    去官方站点获取yum仓库 [root@web01 ~]# cat /etc/yum.repos.d/nginx.repo [nginx] name=nginx repo baseurl=http:// ...

  7. python-----图像去重(imagededup)

    安装库: pip install imagededup 安装可能遇到的问题参考: Cannot uninstall 'wrapt'. It is a distutils installed proje ...

  8. Go 性能分析之案例一

    思考 相信大家在实际的项目开发中会遇到这么一个事,有的程序员写的代码不仅bug少,而且性能高:而有的程序员写的代码能否流畅的跑起来,都是一个很大问题.而我们今天要讨论的就是一个关于性能优化的案例分析. ...

  9. Java枚举的小例子

    有一次工作中,要根据多个参数确定一个值(车辆事件),确定一个值需要的参数大部分的属性名称是相同的,少部分是独有的,但是参数的值几乎都是不同的: 因为参数太多,if-else写起来就太不优雅了,可以参考 ...

  10. python中字符串离散化的例子

    ''' 问题:1.假设DataFrame中有一列名为type,其字段中内容为a,b,c 等用,隔开的值,如: type a,b,c a,f,x b,c,e ...统计type中每个类型出现的次数 并绘 ...