核心思想

基于阅读理解中QA系统的样本中可能混有对抗样本的情况,在寻找答案时,首先筛选出可能包含答案的句子,再做进一步推断。

方法

Part 1

given: 段落C   query Q

段落切分成句子:

每个句子和Q合并:

使用依存句法分析得到表示:

基于T Si T Q ,分别构建 Tree-LSTMSi  Tree-LSTMQ

两个Tree-LSTMs的叶结点的输入都是GloVe word vectors

输出隐向量分别是  hSi  hQ

hSi  hQ连接起来并传递给一个前馈神经网络来计算出Si包含Q的答案的可能性

loss 和前馈神经网络follows语义相关性网络

有监督的训练时,si包含答案为1,否则为0。

Part 2

计算最可能答案:

L代表QA似然神经网络预测的似然

将一对句子S*和Q传递给预先训练好的单BiDAF(Seo et al., 2016),生成Q的答案a^。

实验

数据集:sampled from the training set of SQuAD v1.1

there are 87,599 queries of 18,896 paragraphs in the training set of SQuAD v1.1. While each query refers to one paragraph, a paragraph may refer to multiple queries.

d=87,599 is the number of queries. The set D contains 440,135 sentence pairs, among which 87,306 are positive instances and 352,829 are negative instances.

positive instance: ,前者包含后者的答案。

两种采样方法: pair-level sampling ,paragraph-level sampling

1. In pair-level sampling, 45,000 positive instances and 45,000 negative instances are randomly selected from D as the training set.

2. paragraph-level sampling 首先随机选Qk,然后从Dk中随机采样出一个positive instance 和一个negative instance

Each set has 90,000 instances. The validation set with 3,000 instances are sampled through these two methods as well.

测试集:ADDANY adversarial dataset : 1,000 paragraphs and each paragraph refers to only one query. By splitting and combining, 6,154 sentence pairs are obtained.

实验设置:The dimension of GloVe word vectors (Pennington et al., 2014) is set as 300. The sentence scoring neural network is trained by Adagrad (Duchi et al., 2011) with a learning rate of 0.01 and a batch size of 25. Model parameters are regularized by a 10-4 strength of per-minibatch L2 regularization.

结果

评价标准:Macro-averaged F1 score (Rajpurkar et al., 2016; Jia and Liang, 2017).

对于table2,可以理解为二分类问题。

consider three types of sentences: adversarial sentences, answer sentences, and the sentences that include the answers returned by the single BiDAF system.

the x-axis denotes the ranked position for each sentence according to its likelihood score , while the y-axis is the number of sentences for each type ranked at this position.

It shows that among the 1,000 (C;Q) pairs, 647 and 657 answer sentences are selected by the QA Likelihood neural network based on pair-level sampling and paragraph-level sampling respectively, but only 136 and 141 adversarial sentences are selected by the QA Likelihood neural network.

结论

对于ADDSENT的没有做。

论文阅读 | Tackling Adversarial Examples in QA via Answer Sentence Selection的更多相关文章

  1. [论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks

    [论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问 ...

  2. [论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding

    [论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 ...

  3. 论文阅读 | Universal Adversarial Triggers for Attacking and Analyzing NLP

    [code] [blog] 主要思想和贡献 以前,NLP中的对抗攻击一般都是针对特定输入的,那么他们对任意的输入是否有效呢? 本文搜索通用的对抗性触发器:与输入无关的令牌序列,当连接到来自数据集的任何 ...

  4. 论文阅读 | Combating Adversarial Misspellings with Robust Word Recognition

    对抗防御可以从语义消歧这个角度来做,不同的模型,后备模型什么的,我觉得是有道理的,和解决未登录词的方式是类似的,毕竟文本方面的对抗常常是修改为UNK来发生错误的.怎么使用backgroud model ...

  5. 论文阅读 | Real-Time Adversarial Attacks

    摘要 以前的对抗攻击关注于静态输入,这些方法对流输入的目标模型并不适用.攻击者只能通过观察过去样本点在剩余样本点中添加扰动. 这篇文章提出了针对于具有流输入的机器学习模型的实时对抗攻击. 1 介绍 在 ...

  6. 论文阅读 | Generating Fluent Adversarial Examples for Natural Languages

    Generating Fluent Adversarial Examples for Natural Languages   ACL 2019 为自然语言生成流畅的对抗样本 摘要 有效地构建自然语言处 ...

  7. 《Explaining and harnessing adversarial examples》 论文学习报告

    <Explaining and harnessing adversarial examples> 论文学习报告 组员:裴建新   赖妍菱    周子玉 2020-03-27 1 背景 Sz ...

  8. 【论文阅读】Deep Adversarial Subspace Clustering

    导读: 本文为CVPR2018论文<Deep Adversarial Subspace Clustering>的阅读总结.目的是做聚类,方法是DASC=DSC(Deep Subspace ...

  9. Adversarial Examples for Semantic Segmentation and Object Detection 阅读笔记

    Adversarial Examples for Semantic Segmentation and Object Detection (语义分割和目标检测中的对抗样本) 作者:Cihang Xie, ...

随机推荐

  1. python函数参数的传递、带星号参数的传递

    python中函数参数的传递是通过赋值来传递的.函数参数的使用又有俩个方面值得注意:1.函数参数是如何定义的 2.在调用函数的过程中参数是如何被解析 先看第一个问题,在python中函数参数的定义主要 ...

  2. IntelliJ IDEA 创建 Git 分支并且 Push 到远程

    在 IntelliJ 的右下角,你可以看到当前的 Git 分支,然后你可以单击这个分支后,在弹出的界面的最上方有一个新建分支的选项. 然后再弹出的界面中,输入你要创建的分支名称后回车输入. 然后从项目 ...

  3. 2019ICPC上海网络赛 A Lightning Routing I 点分树(动态点分治)+线段树

    题意 给一颗带边权的树,有两种操作 \(C~e_i~w_i\),将第\(e_i\)条边的边权改为\(w_i\). \(Q~v_i\),询问距\(v_i\)点最远的点的距离. 分析 官方题解做法:动态维 ...

  4. java 面试心得总结-BAT、网易

    http://blog.csdn.net/sinat_26812289/article/details/50898693

  5. Codeforces 1106E. Lunar New Year and Red Envelopes(DP)

    E. Lunar New Year and Red Envelopes 题意: 在长度为n的时间轴上,有k个红包,每个红包有领取时间段[s,t],价值w,以及领了个这个红包之后,在时间d到来之前无法再 ...

  6. 2018-2019-2 20165330《网络对抗技术》Exp10 Final 基于PowerShell的渗透实践

    目录 实验内容 实验步骤 实验中遇到的问题 实验总结与体会 实验内容 PoweShell简介 PowerShell入门学习 PowerShell渗透工具介绍 相关渗透实践分析 ms15-034之Pow ...

  7. Nginx之核心结构体ngx_cycle_t

    1. ngx_listening_t 结构体 ngx_cycle_t 对象中有一个动态数组成员叫做 listening,它的每个数组元素都是 ngx_listening_t 结构体,而每个 ngx_l ...

  8. (转载)完成端口(CompletionPort)详解 - 手把手教你玩转网络编程系列之三

    转自:http://blog.csdn.net/piggyxp/article/details/6922277 前 言 本系列里完成端口的代码在两年前就已经写好了,但是由于许久没有写东西了,不知该如何 ...

  9. Ubuntu配置ISCSI

      target端: 1.安装 iscsi target相关的软件 $ sudo apt-get install iscsitarget iscsitarget-source iscsitarget- ...

  10. python pip 使用

    一.修改 pip 源 Windows 在用户目录下新建 pip\pip.ini 文件,如:C:\Users\Administrator\pip\pip.ini [global] index-url = ...