Repeater POJ - 3768 (分形)
Repeater
Harmony is indispensible in our daily life and no one can live without it----may be Facer is the only exception. One day it is rumored that repeat painting will create harmony and then hundreds of people started their endless drawing. Their paintings were based on a small template and a simple method of duplicating. Though Facer can easily imagine the style of the whole picture, but he cannot find the essential harmony. Now you need to help Facer by showing the picture on computer.
You will be given a template containing only one kind of character and spaces, and the template shows how the endless picture is created----use the characters as basic elements and put them in the right position to form a bigger template, and then repeat and repeat doing that. Here is an example.
# #
# <-template
# #
So the Level 1 picture will be
# #
#
# #
Level 2 picture will be
# # # #
# #
# # # #
# #
#
# #
# # # #
# #
# # # #
Input
The input contains multiple test cases.
The first line of each case is an integer N, representing the size of the template is NN (N* could only be 3, 4 or 5).
Next N lines describe the template.
The following line contains an integer Q, which is the Scale Level of the picture.
Input is ended with a case of N=0.
It is guaranteed that the size of one picture will not exceed 3000*3000.
Output
For each test case, just print the Level Q picture by using the given template.
Sample Input
3
# #
#
# #
1
3
# #
#
# #
3
4
OO
O O
O O
OO
2
0
Sample Output
# #
#
# #
# # # # # # # #
# # # #
# # # # # # # #
# # # #
# #
# # # #
# # # # # # # #
# # # #
# # # # # # # #
# # # #
# #
# # # #
# #
#
# #
# # # #
# #
# # # #
# # # # # # # #
# # # #
# # # # # # # #
# # # #
# #
# # # #
# # # # # # # #
# # # #
# # # # # # # #
OO OO
O OO O
O OO O
OO OO
OO OO
O O O O
O O O O
OO OO
OO OO
O O O O
O O O O
OO OO
OO OO
O OO O
O OO O
OO OO
思路:
分形的经典问题,
将大图形转为很多个小图形处理,小图形也继续分为更小的图形处理。
用dfs递归操作即可,要维护好当前图形的左上角的坐标和当前步骤的图形尺寸(边长),以及当前是第几层,到第一层的时候直接赋值为单元元素。
个人觉得自己写法属于比较简单的。
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
inline void getInt(int* p);
const int maxn = 3000 + 10;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
bool s[maxn][maxn];
char a[maxn][maxn];
int x;
void dfs(int lx, int ly, int rx, int ry, int len, int st)
{
// cout << lx << " " << ly << " " << rx << " " << ry << " " << len << " " << st << endl;
if (len == 1)
{
s[lx][ly] = 1;
return ;
}
int to = len / x;
repd(i, 1, x)
{
rep(j, 0, x)
{
if (a[i][j] != ' ')
{
dfs(lx + (i - 1)*to, ly + (j)*to, lx + (i - 1)*to + to - 1, ly + (j)*to + to - 1, to, st - 1);
}
}
}
}
char base;
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
while (~scanf("%d", &x))
{
if (!x)
{
break;
}
// cin >> base;
getchar();
repd(i, 1, x)
{
gets(a[i]);
// getline(cin, a[i]);
}
repd(i, 1, x)
{
rep(j, 0, x)
{
if (a[i][j] != ' ')
{
base = a[i][j];
}
// cout<<a[i][j];
}
// cout<<endl;
}
// chu(base);
int step;
// cin >> step;
scanf("%d", &step);
int len = (int)(pow(x, step) + 0.5);
dfs(1, 1, len, len, len, step);
repd(i, 1, len)
{
repd(j, 1, len)
{
if (s[i][j])
{
putchar(base);
// cout << base;
} else
{
putchar(' ');
// cout << ' ';
}
s[i][j] = 0;
}
putchar('\n');
// cout << endl;
}
}
return 0;
}
inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
Repeater POJ - 3768 (分形)的更多相关文章
- POJ 2083 Fractal 分形
去年校赛团队赛就有一道分形让所有大一新生欲生欲死…… 当时就想学了 结果一直拖到…… 今天上午…… 马上要省选了 才会一点基础分形…… 还是自己不够努力啊…… 分形主要是要找到递归点…… 还有深度…… ...
- POJ 2083 Fractal 分形题目
这两天自学了一线算法导论里分治策略的内容,秉着只有真正投入投入编程,才能更好的理解一种算法的思想的想法,兴致勃勃地找一些入门的题来学习. 搜了一下最后把目光锁定在了Poj fractal这一个题上.以 ...
- 迭代加深搜索 POJ 1129 Channel Allocation
POJ 1129 Channel Allocation Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 14191 Acc ...
- poj 题目分类(1)
poj 题目分类 按照ac的代码长度分类(主要参考最短代码和自己写的代码) 短代码:0.01K--0.50K:中短代码:0.51K--1.00K:中等代码量:1.01K--2.00K:长代码:2.01 ...
- POJ题目分类(按初级\中级\高级等分类,有助于大家根据个人情况学习)
本文来自:http://www.cppblog.com/snowshine09/archive/2011/08/02/152272.spx 多版本的POJ分类 流传最广的一种分类: 初期: 一.基本算 ...
- 【转载】图论 500题——主要为hdu/poj/zoj
转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...
- POJ题目细究
acm之pku题目分类 对ACM有兴趣的同学们可以看看 DP: 1011 NTA 简单题 1013 Great Equipment 简单题 102 ...
- 转载:poj题目分类(侵删)
转载:from: POJ:http://blog.csdn.net/qq_28236309/article/details/47818407 按照ac的代码长度分类(主要参考最短代码和自己写的代码) ...
- SurfaceView 绘制分形图
之前一直做的是应用类,这次抽时间,参考网上资料实践了下SurfaceView.目标是在页面上画一个科赫曲线的分形图. 代码如下: package com.example.fredric.demo02; ...
随机推荐
- 【MOOC课程学习记录】程序设计与算法(一)C语言程序设计
课程结课了,把做的习题都记录一下,告诉自己多少学了点东西,也能给自己一点鼓励. ps:题目都在cxsjsxmooc.openjudge.cn上能看到,参考答案在差不多结课的时候也会在mooc上放出来. ...
- manjaro Docker环境配置记
1.系统配置如下: ‘by: /home/inkhin/桌面/深度截图_选择区域_20191004145104.png [吐槽: ChromeLinux版居然不能用博客园TinyMce的上传图片功能] ...
- 文件input框选择图片实时显示小技巧
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 原生js实现图片的3d效果
<!doctype html><html lang="en"><head><meta charset="UTF-8"& ...
- [github] 关于华为鸿蒙OS
English Docs | 中文文档 | Türkçe Dökümanlar HarmonyOS Ⅰ. 鸿蒙系统简介 鸿蒙系统(HarmonyOS),是第一款基于微内核的全场景分布式OS,是华为自主 ...
- oracle杀死正在执行的进程
1 查询目前正在执行的终端和进程, SELECT /*+ rule */ s.username,decode(l.type,'TM','TABLE LOCK','TX','ROW LOCK',NULL ...
- javaweb配置连接mysql数据库
1.首先新建基础连接类BaseDao,在这里配置链接的数据库名称,用户名以及密码,以及执行读与写操作的父方法,代码如下: package com.demo.dao; import java.sql.D ...
- HDU 1325 有根树的判断
Is It A Tree? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- GCD&&素筛&&快速幂 --A - Pseudoprime numbers
Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). Th ...
- hdu 6069 Counting divisors 公式+区间筛
比赛的时候把公式扣出来了,,但是没有想到用筛法算公因子,,默默学习一下.. 题解:设n=p1^(c1)p2^{c2}...pm^{cm},n=p1^c1*p2^c2...p ...