Repeater

POJ - 3768

Harmony is indispensible in our daily life and no one can live without it----may be Facer is the only exception. One day it is rumored that repeat painting will create harmony and then hundreds of people started their endless drawing. Their paintings were based on a small template and a simple method of duplicating. Though Facer can easily imagine the style of the whole picture, but he cannot find the essential harmony. Now you need to help Facer by showing the picture on computer.

You will be given a template containing only one kind of character and spaces, and the template shows how the endless picture is created----use the characters as basic elements and put them in the right position to form a bigger template, and then repeat and repeat doing that. Here is an example.

	# #

 #      <-template

# #

So the Level 1 picture will be

	# #

 #

# #

Level 2 picture will be

# #   # #

 #     #

# #   # #

   # #   

    #    

   # #   

# #   # #

 #     # 

# #   # #

Input

The input contains multiple test cases.

The first line of each case is an integer N, representing the size of the template is NN (N* could only be 3, 4 or 5).

Next N lines describe the template.

The following line contains an integer Q, which is the Scale Level of the picture.

Input is ended with a case of N=0.

It is guaranteed that the size of one picture will not exceed 3000*3000.

Output

For each test case, just print the Level Q picture by using the given template.

Sample Input

3
# #
#
# #
1
3
# #
#
# #
3
4
OO
O O
O O
OO
2
0

Sample Output


# #
#
# #
# # # # # # # #
# # # #
# # # # # # # #
# # # #
# #
# # # #
# # # # # # # #
# # # #
# # # # # # # #
# # # #
# #
# # # #
# #
#
# #
# # # #
# #
# # # #
# # # # # # # #
# # # #
# # # # # # # #
# # # #
# #
# # # #
# # # # # # # #
# # # #
# # # # # # # #
OO OO
O OO O
O OO O
OO OO
OO OO
O O O O
O O O O
OO OO
OO OO
O O O O
O O O O
OO OO
OO OO
O OO O
O OO O
OO OO

思路:

分形的经典问题,

将大图形转为很多个小图形处理,小图形也继续分为更小的图形处理。

用dfs递归操作即可,要维护好当前图形的左上角的坐标和当前步骤的图形尺寸(边长),以及当前是第几层,到第一层的时候直接赋值为单元元素。

个人觉得自己写法属于比较简单的。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}} inline void getInt(int* p);
const int maxn = 3000 + 10;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/ bool s[maxn][maxn];
char a[maxn][maxn];
int x;
void dfs(int lx, int ly, int rx, int ry, int len, int st)
{
// cout << lx << " " << ly << " " << rx << " " << ry << " " << len << " " << st << endl;
if (len == 1)
{
s[lx][ly] = 1;
return ;
}
int to = len / x;
repd(i, 1, x)
{
rep(j, 0, x)
{
if (a[i][j] != ' ')
{
dfs(lx + (i - 1)*to, ly + (j)*to, lx + (i - 1)*to + to - 1, ly + (j)*to + to - 1, to, st - 1);
}
}
} }
char base;
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
while (~scanf("%d", &x))
{
if (!x)
{
break;
}
// cin >> base;
getchar();
repd(i, 1, x)
{
gets(a[i]);
// getline(cin, a[i]);
}
repd(i, 1, x)
{
rep(j, 0, x)
{
if (a[i][j] != ' ')
{
base = a[i][j];
}
// cout<<a[i][j];
}
// cout<<endl;
}
// chu(base);
int step;
// cin >> step;
scanf("%d", &step);
int len = (int)(pow(x, step) + 0.5);
dfs(1, 1, len, len, len, step);
repd(i, 1, len)
{
repd(j, 1, len)
{
if (s[i][j])
{
putchar(base);
// cout << base;
} else
{
putchar(' ');
// cout << ' ';
}
s[i][j] = 0;
}
putchar('\n');
// cout << endl;
}
} return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

Repeater POJ - 3768 (分形)的更多相关文章

  1. POJ 2083 Fractal 分形

    去年校赛团队赛就有一道分形让所有大一新生欲生欲死…… 当时就想学了 结果一直拖到…… 今天上午…… 马上要省选了 才会一点基础分形…… 还是自己不够努力啊…… 分形主要是要找到递归点…… 还有深度…… ...

  2. POJ 2083 Fractal 分形题目

    这两天自学了一线算法导论里分治策略的内容,秉着只有真正投入投入编程,才能更好的理解一种算法的思想的想法,兴致勃勃地找一些入门的题来学习. 搜了一下最后把目光锁定在了Poj fractal这一个题上.以 ...

  3. 迭代加深搜索 POJ 1129 Channel Allocation

    POJ 1129 Channel Allocation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14191   Acc ...

  4. poj 题目分类(1)

    poj 题目分类 按照ac的代码长度分类(主要参考最短代码和自己写的代码) 短代码:0.01K--0.50K:中短代码:0.51K--1.00K:中等代码量:1.01K--2.00K:长代码:2.01 ...

  5. POJ题目分类(按初级\中级\高级等分类,有助于大家根据个人情况学习)

    本文来自:http://www.cppblog.com/snowshine09/archive/2011/08/02/152272.spx 多版本的POJ分类 流传最广的一种分类: 初期: 一.基本算 ...

  6. 【转载】图论 500题——主要为hdu/poj/zoj

    转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...

  7. POJ题目细究

    acm之pku题目分类 对ACM有兴趣的同学们可以看看 DP:  1011   NTA                 简单题  1013   Great Equipment     简单题  102 ...

  8. 转载:poj题目分类(侵删)

    转载:from: POJ:http://blog.csdn.net/qq_28236309/article/details/47818407 按照ac的代码长度分类(主要参考最短代码和自己写的代码)  ...

  9. SurfaceView 绘制分形图

    之前一直做的是应用类,这次抽时间,参考网上资料实践了下SurfaceView.目标是在页面上画一个科赫曲线的分形图. 代码如下: package com.example.fredric.demo02; ...

随机推荐

  1. ffmpeg 使用 gdb 调试相关技巧

    本文说明了,在ffmpeg二次开发或调用库的过程,如何借助于ffmpeg源码进行调试. 注:ffmpeg版本是4.0. 1. 编写代码 编写将pcm数据转换为mp2的代码 pcm_to_mp2.c # ...

  2. 用Python给你的代码上个进度条吧 | 【代码也要面子的】

    微信公众号:AI算法与图像处理如果你觉得对你有帮助,欢迎关注.转发以及点赞哦-( ̄▽ ̄-)~ 前言 最近在跑一些代码的时候,很烦...因为有时候不知道这段程序什么时候能执行完,现在执行哪里了,如果报错 ...

  3. spring中的BeanFactoryPostProcessor

    spring中的BeanFactoryPostProcessor和BeanPostProcessor有些像,BeanPostProcessor是在bean的初始化前后进行一些操作, BeanFacto ...

  4. mysql 触发器检测表数据添加,进而调用存储过程检测数据,进而调用存储过程添加数据

    触发器: beginDECLARE user_mes INT(64);SELECT user_id into user_mes FROM order_orderlist where id = new. ...

  5. mysql 连接远程连接服务器 1130错误

    今天在用sqlyog连接非本地的Mysql服务器的数据库,居然无法连接很奇怪,报1130错误, ERROR 1130: Host 192.168.3.100 is not allowed to con ...

  6. 洛谷P2659 美丽的序列 单调栈模板

    P2659 美丽的序列 题目链接 https://www.luogu.org/problemnew/show/P2659 题目描述 为了研究这个序列的美丽程度,GD定义了一个序列的"美丽度& ...

  7. Go入门所踩过的坑:cannot find package "" in any of

    问题:cannot find package "" in any of.现已按照博客解决,分享一种自己踩得坑欢迎大神指导交流! 首先使用go env查看当前环境变量,新手入门出现找 ...

  8. 几个主流浏览器 Window.open打开新窗口 、模拟a标签打开新窗口的 表现

    Window.open打开新窗口 1.常用浏览器打开新窗口(正常打开window.open)的的不同表现形式(PC/移动端) 2.Window.open在异步处理中打开(_blank) a标签在异步处 ...

  9. Windows phone 8 二维码生成与扫描

    1. 二维码的生成 二维码生成用到了一个第三方的插件(zxing.wp8.0) 根据指定的信息,生成对应的二维码. 代码很简单: bool falg=tbk.Text==""?fa ...

  10. H-ui前端框架,后端模板

    http://www.h-ui.net/ H-ui前端框架系统是基于 HTML.CSS.JAVASCRIPT开发的轻量级web前端框架. H-ui是根据中国现阶段网站特性和程序员开发习惯,在boots ...