oracle的分析函数over 及开窗函数

转自:http://zonghl8006.blog.163.com/blog/static/4528311520083995931317/
一:分析函数over
Oracle从8.1.6开始提供分析函数,分析函数用于计算基于组的某种聚合值,它和聚合函数的不同之处是
对于每个组返回多行,而聚合函数对于每个组只返回一行。
下面通过几个例子来说明其应用。                                      
1:统计某商店的营业额。

date       sale
     1           20
     2           15
     3           14
     4           18
     5           30
    规则:按天统计:每天都统计前面几天的总额
    得到的结果:
DATE SALE SUM
    ----- -------- ------
    1      20        20           --1天          
    2      15        35           --1天+2天          
    3      14        49           --1天+2天+3天          
    4      18        67            .         
    5      30        97            .
    
2:统计各班成绩第一名的同学信息
    NAME   CLASS S                        
    ----- ----- ----------------------
    fda    1      80                    
    ffd    1      78                    
    dss    1      95                    
    cfe    2      74

gds    2      92                    
    gf     3      99                    
    ddd    3      99                    
    adf    3      45                    
    asdf   3      55                    
    3dd    3      78             
  
    通过:  
    --
    select * from                                                                      
    (                                                                           
    select name,class,s,rank()over(partition by class order by s desc) mm from t2
    )                                                                           
    where mm=1
    --
    得到结果:
    NAME   CLASS S                       MM                                                                                       
    ----- ----- ---------------------- ----------------------
    dss    1      95                      1                     
    gds    2      92                      1                     
    gf     3      99                      1                     
    ddd    3      99                      1

注意:
    1.在求第一名成绩的时候,不能用row_number(),因为如果同班有两个并列第一,row_number()只返回一个结果        
    2.rank()和dense_rank()的区别是:
      --rank()是跳跃排序,有两个第二名时接下来就是第四名
      --dense_rank()l是连续排序,有两个第二名时仍然跟着第三名

3.分类统计 (并显示信息)
    A   B   C                     
    -- -- ----------------------
    m   a   2                     
    n   a   3                     
    m   a   2                     
    n   b   2                     
    n   b   1                     
    x   b   3                     
    x   b   2                     
    x   b   4                     
    h   b   3
   select a,c,sum(c)over(partition by a) from t2               
   得到结果:
   A   B   C        SUM(C)OVER(PARTITIONBYA)

-- -- ------- ------------------------
   h   b   3        3                       
   m   a   2        4                       
   m   a   2        4                       
   n   a   3        6                       
   n   b   2        6                       
   n   b   1        6                       
   x   b   3        9                       
   x   b   2        9                       
   x   b   4        9                       
 
   如果用sum,group by 则只能得到
   A   SUM(C)

-- ----------------------
   h   3                     
   m   4                     
   n   6                     
   x   9                     
   无法得到B列值      
 
=====
select * from test

数据:
A B C
1 1 1
1 2 2
1 3 3
2 2 5
3 4 6

---将B栏位值相同的对应的C 栏位值加总 select a,b,c, SUM(C) OVER (PARTITION BY B) C_Sum from test

A B C C_SUM
1 1 1 1
1 2 2 7
2 2 5 7
1 3 3 3
3 4 6 6

---如果不需要已某个栏位的值分割,那就要用 null

eg: 就是将C的栏位值summary 放在每行后面

select a,b,c, SUM(C) OVER (PARTITION BY null) C_Sum from test

A B C C_SUM

1 1 1 17
1 2 2 17
1 3 3 17
2 2 5 17
3 4 6 17

求个人工资占部门工资的百分比

SQL> select * from salary;

NAME DEPT SAL

---------- ---- -----

a 10 2000
b 10 3000
c 10 5000
d 20 4000

SQL> select name,dept,sal,sal*100/sum(sal) over(partition by dept) percent from salary;

NAME DEPT SAL PERCENT

---------- ---- ----- ----------

a 10 2000 20
b 10 3000 30
c 10 5000 50
d 20 4000 100

二:开窗函数          
      开窗函数指定了分析函数工作的数据窗口大小,这个数据窗口大小可能会随着行的变化而变化,举例如下:
1:    
   over(order by salary) 按照salary排序进行累计,order by是个默认的开窗函数
   over(partition by deptno)按照部门分区
2:
  over(order by salary range between 5 preceding and 5 following)
   每行对应的数据窗口是之前行幅度值不超过5,之后行幅度值不超过5
   例如:对于以下列

aa
     1
     2
     2
     2
     3
     4
     5
     6
     7
     9

sum(aa)over(order by aa range between 2 preceding and 2 following)
   得出的结果是
            AA                       SUM

---------------------- -------------------------------------------------------
            1                       10                                                     
            2                       14                                                     
            2                       14                                                     
            2                       14                                                     
            3                       18                                                     
            4                       18                                                     
            5                       22                                                     
            6                       18                                                               
            7                       22                                                               
            9                       9

就是说,对于aa=5的一行 ,sum为   5-1<=aa<=5+2 的和    对于aa=2来说 ,sum=1+2+2+2+3+4=14     ;    又如 对于aa=9 ,9-1<=aa<=9+2 只有9一个数,所以sum=9    ;               3:其它:      over(order by salary rows between 2 preceding and 4 following)           每行对应的数据窗口是之前2行,之后4行 4:下面三条语句等效:                over(order by salary rows between unbounded preceding and unbounded following)           每行对应的数据窗口是从第一行到最后一行,等效: over(order by salary range between unbounded preceding and unbounded following)            等效      over(partition by null)

常用的分析函数如下所列:

row_number() over(partition by ... order by ...) rank() over(partition by ... order by ...) dense_rank() over(partition by ... order by ...) count() over(partition by ... order by ...) max() over(partition by ... order by ...) min() over(partition by ... order by ...) sum() over(partition by ... order by ...) avg() over(partition by ... order by ...) first_value() over(partition by ... order by ...) last_value() over(partition by ... order by ...) lag() over(partition by ... order by ...) lead() over(partition by ... order by ...)

示例 SQL> select type,qty from test;

TYPE QTY

---------- ----------

1 6
2 9

SQL> select type,qty,to_char(row_number() over(partition by type order by qty))||'/'||to_char(count(*) over(partition by type)) as cnt2 from test;

TYPE QTY CNT2

---------- ---------- ------------
3 1/2
1 6 2/2
2 5 1/3
7 2/3
2 9 3/3

SQL> select * from test;

---------- -------------------------------------------------
1 11111
2 22222
3 33333
4 44444

SQL> select t.id,mc,to_char(b.rn)||'/'||t.id)e 2 from test t, (select rownum rn from (select max(to_number(id)) mid from test) connect by rownum <=mid ))L 4 where b.rn<=to_number(t.id) order by id

ID MC TO_CHAR(B.RN)||'/'||T.ID

--------- -------------------------------------------------- ---------------------------------------------------
1 11111 1/1
2 22222 1/2
2 22222 2/2
3 33333 1/3
3 33333 2/3
3 33333 3/3
44444 1/4 44444 2/4
4 44444 3/4CNOUG4 44444 4/4

10 rows selected

*******************************************************************

关于partition by

这些都是分析函数,好像是8.0以后才有的 row_number()和rownum差不多,功能更强一点(可以在各个分组内从1开时排序) rank()是跳跃排序,有两个第二名时接下来就是第四名(同样是在各个分组内) dense_rank()l是连续排序,有两个第二名时仍然跟着第三名。相比之下row_number是没有重复值的 lag(arg1,arg2,arg3): arg1是从其他行返回的表达式 arg2是希望检索的当前行分区的偏移量。是一个正的偏移量,时一个往回检索以前的行的数目。 arg3是在arg2表示的数目超出了分组的范围时返回的值。

1. select deptno,row_number() over(partition by deptno order by sal) from emp order by deptno;

2. select deptno,rank() over (partition by deptno order by sal) from emp order by deptno;

3. select deptno,dense_rank() over(partition by deptno order by sal) from emp order by deptno;

4. select deptno,ename,sal,lag(ename,1,null) over(partition by deptno order by ename) from emp ord er by deptno;

5. select deptno,ename,sal,lag(ename,2,'example') over(partition by deptno order by ename) from em p order by deptno;

6. select deptno, sal,sum(sal) over(partition by deptno) from emp;--每行记录后都有总计值  select deptno, sum(sal) from emp group by deptno;

7. 求每个部门的平均工资以及每个人与所在部门的工资差额

select deptno,ename,sal ,

round(avg(sal) over(partition by deptno)) as dept_avg_sal,

round(sal-avg(sal) over(partition by deptno)) as dept_sal_diff

from emp;

Oracle 开窗函数--转的更多相关文章

  1. Oracle开窗函数笔记及应用场景

    介绍Oracle的开窗函数之前先介绍一下分析函数,因为开窗函数也属于分析函数 分析函数用于计算基于组的某种聚合值,它和聚合函数的不同之处是:对于每个组返回多行,而聚合函数对于每个组只返回一行. 上面是 ...

  2. Oracle开窗函数 over()(转)

    copy文链接:http://blog.csdn.net/yjjm1990/article/details/7524167#,http://www.2cto.com/database/201402/2 ...

  3. oracle的分析函数over 及开窗函数

    转:http://www.2cto.com/database/201310/249722.html oracle的分析函数over 及开窗函数   一:分析函数over   Oracle从8.1.6开 ...

  4. oracle分析函数技术详解(配上开窗函数over())

    一.Oracle分析函数入门 分析函数是什么?分析函数是Oracle专门用于解决复杂报表统计需求的功能强大的函数,它可以在数据中进行分组然后计算基于组的某种统计值,并且每一组的每一行都可以返回一个统计 ...

  5. oracle 分析函数和开窗函数

    最近遇到一个需求,将查询出的数据按照地区分组,随机取出每个区域的2条数据,这里用到了oracle的分析和开窗函数: 最终写出的sql如下: select * from (select region,r ...

  6. 超级牛皮的oracle的分析函数over(Partition by...) 及开窗函数 (转)

    http://zonghl8006.blog.163.com/blog/static/4528311520083995931317/ over(Partition by...) 一个超级牛皮的ORAC ...

  7. 超级牛皮的oracle的分析函数over(Partition by...) 及开窗函数

    over(Partition by...) 一个超级牛皮的ORACLE特有函数. 天天都用ORACLE,用了快2年了.最近才接触到这个功能强大而灵活的函数.真实惭愧啊! oracle的分析函数over ...

  8. [转]Oracle 语法之 OVER (PARTITION BY ..) 及开窗函数

    oracle的分析函数over 及开窗函数 一:分析函数Oracle从8.1.6开始提供分析函数,分析函数用于计算基于组的某种聚合值,它和聚合函数的不同之处是 对于每个组返回多行,而聚合函数对于每个组 ...

  9. oracle的分析函数over(Partition by...) 及开窗函数

        over(Partition by...) 一个超级牛皮的ORACLE特有函数. oracle的分析函数over 及开窗函数一:分析函数overOracle从8.1.6开始提供分析函数,分析函 ...

随机推荐

  1. 后端 SpringBoot + 前端 vue 打包发布到Tomcat

    近段时间 做了一些前后端的开发 需要在Tomcat里进行发布    把自己整理的分享出来 后端打包 pom.xml 文件 <packaging>war</packaging> ...

  2. redis数据库安装

        一. 简单介绍: REmote DIctionary Server(Redis) 是一个由Salvatore Sanfilippo写的key-value存储系统. Redis是一个开源的使用A ...

  3. 模型预测控制 MPC

    使用MPC的原因:

  4. (六)Java秒杀项目之接口优化

    一.Redis预减库存减少数据库访问 思路:减少数据库访问 1.系统初始化,把商品库存数量加载到Redis 2.收到请求,Redis预减库存,库存不足,直接返回,否则进入3 3.请求入队,立即返回排队 ...

  5. 串的模式匹配,KMP算法

    串的模式匹配 现考虑一个常用操作,在字符串s(我们称为主串)中的第pos开始处往后查找,看在主串s中有没有和子串p相匹配的的,如果有,则返回字串p第一次出现的位置. 暴力求解 int Index(ch ...

  6. NOIP2012 借教室 题解 洛谷P1083

    一看就是暴力 好吧,其实是线段树或差分+二分,这里用的是差分+二分的做法. 二分部分的代码,套个二分板子就行 ,right=m; while(left<right)//二分 { ; ; else ...

  7. 【静态延迟加载】self关键字和static关键字的区别

    先来看下代码,从代码中发现问题.解决问题 //先实现一个手机工厂类 class Phone{ public static function setBrand(){ echo "Main Ph ...

  8. ACCESS打得开mdb,但打不开表,弹框提示未知错误。

    我的电脑有个一个奇怪的错误ACCESS能打开mdb数据库,但是打不开表,一打开就提示错误,只有俩字“未知”.重装OFFICE也不行!而且电脑上使用Access数据库的应用软件都不行了!都提示“未知”错 ...

  9. C++ STL 之 string

    #include <iostream> #include <string> using namespace std; // 初始化 void test01() { string ...

  10. BootStrap【一、概述】

    4月底出去浪了一圈,回来收了一周的心才收回来,5.12,重启自学 今天早上总算大概把JAVASpring相关的东西过了一边,Spring基础.IOC.AOP,看的有些头晕脑胀 公司项目除了Spring ...