原题戳这里

题解

显然原题等价于让我们求这个式子\(\prod\limits_{i=l}^{r}(1-p_i)\sum\limits_{i=l}^{r}\frac{p_i}{1-p_i}\)的最大值是多少

打打表,或者直观上感受一下,这东西是个凸壳,进一步观察,你会发现随着左端点的右移,最优决策点也在右移,于是拿个\(two\ pointer\)搞一搞就好了

凸性的证明在代码下面QWQ

代码:

#include <bits/stdc++.h>

using namespace std;

#define N 1000000

int n, p[N + 5];
long double prod[N + 5], sum[N + 5], ans; int main() {
scanf("%d", &n);
prod[0] = 1;
for (int i = 1; i <= n; ++i)
scanf("%d", &p[i]), prod[i] = p[i] / 1e6, sum[i] = sum[i - 1] + prod[i] / (1 - prod[i]), prod[i] = prod[i - 1] * (1 - prod[i]);
int j = 1;
for (int i = 1; i <= n; ++i) {
while (j + 1 <= n && prod[j + 1] * (sum[j + 1] - sum[i - 1]) >= prod[j] * (sum[j] - sum[i - 1])) j++;
ans = max(ans, prod[j] / prod[i - 1] * (sum[j] - sum[i - 1]));
}
printf("%lld\n", (long long)(ans * 1e6));
return 0;
}

证明:

①式子的值递增时,有如下不等式成立

\[\prod\limits_{i=l}^{r}(1-p_i)\sum\limits_{i=l}^{r}\frac{p_i}{1-p_i}\leqslant \prod\limits_{i=l}^{r+1}(1-p_i)\sum\limits_{i=l}^{r+1}\frac{p_i}{1-p_i}
\]

简单的化一下,会得到一个形式非常优美的东西

\[\sum\limits_{i=l}^{r}\frac{p_i}{1-p_i}\leqslant 1
\]

②式子的值递减时,同理①,可得到\(\sum\limits_{i=l}^{r}\frac{p_i}{1-p_i}\geqslant 1\)

然后又因为\(\sum\limits_{i=l}^{r}\frac{p_i}{1-p_i}\)在固定左端点并把右端点向右移动时是严格单增的,所以是凸的

有了上面的结论,也可以证明最优决策点的单调移动了

[USACO19FEB]Cow Dating——找规律的更多相关文章

  1. The Cow Lineup_找规律

    Description Farmer John's N cows (1 <= N <= 100,000) are lined up in a row.Each cow is labeled ...

  2. P5242 [USACO19FEB]Cow Dating

    题目链接 题意分析 首先我们可以得出计算公式 \[s_i=\prod_{k=1}^i(1-p_k)\] \[f_i=\sum_{k=1}^i\frac{p_k}{1-p_k}\] 那么 \[ans(i ...

  3. [USACO19FEB]Cow Dating

    Luogu5242 通过观察数据,我们可以发现,右端点的取值是单调递增的.于是,我们可以极限一波,用一个双指针法,类似于队列. 右端点的取值满足以下公式: (1-p1)(1-p2)..(1-pn) * ...

  4. 洛谷 P5242 [USACO19FEB]Cow Dating P

    这道题很有意思. 不难发现,对于一个区间 \([l, r]\),恰好只有一个奶牛接受邀请的概率为 \[\prod_{i=l}^r(1-p_i) \cdot \sum_{i=l}^r \frac {p_ ...

  5. hdu 3951 - Coin Game(找规律)

    这道题是有规律的博弈题目,,, 所以我们只需要找出规律来就ok了 牛人用sg函数暴力找规律,菜鸟手工模拟以求规律...[牢骚] if(m>=2) { if(n<=m) {first第一口就 ...

  6. HDU 5703 Desert 水题 找规律

    已知有n个单位的水,问有几种方式把这些水喝完,每天至少喝1个单位的水,而且每天喝的水的单位为整数.看上去挺复杂要跑循环,但其实上,列举几种情况之后就会发现是找规律的题了= =都是2的n-1次方,而且这 ...

  7. hdu4952 Number Transformation (找规律)

    2014多校 第八题 1008 2014 Multi-University Training Contest 8 4952 Number Transformation Number Transform ...

  8. CF456B Fedya and Maths 找规律

    http://codeforces.com/contest/456/problem/B CF#260 div2 B Fedya and Maths Codeforces Round #260 B. F ...

  9. hdu 4731 2013成都赛区网络赛 找规律

    题意:找字串中最长回文串的最小值的串 m=2的时候暴力打表找规律,打表可以用二进制枚举

随机推荐

  1. 用户ID与权限

    目录 用户ID与权限 文件系统查看 权限ID概览 设置位 黏着位 UMASK chmod与chown 代码附录 chmod title: 用户ID与权限 date: 2019/11/25 21:20: ...

  2. vim中文帮助手册的安装

    1. 下载: 下载页面:http://vimcdoc.sourceforge.net/ 选择“Latest platform independent tarball, including an Lin ...

  3. java 复制指定目录中的所有文件和文件夹到另一个指定文件夹中

    package com.test; import java.io.File;import java.io.FileInputStream;import java.io.FileOutputStream ...

  4. Python基础 第四章 字典(1)

    通过名称来访问其各个值的数据结构,映射(mapping). 字典,是Python中唯一的内置映射类型,其中的值不按顺序排列,而是存储在键下.(键,可能是数.字符串.元组). 1.1 字典由 键 及其相 ...

  5. python3 虚拟环境的创建

    创建虚拟环境的方法有很多种,我来分享一下我最常用的虚拟环境的创建方法和一些命令的使用, 什么是虚拟环境? 知道的可以略过,不知道的可以听我简单的说下.虚拟环境这四个字,一听你就明白什么意思了,首先理解 ...

  6. 【搜索】Partition problem

    题目链接:传送门 题面: [题意] 给定2×n个人的相互竞争值,请把他们分到两个队伍里,如果是队友,那么竞争值为0,否则就为v[i][j]. [题解] 爆搜,C(28,14)*28,其实可以稍加优化, ...

  7. idea 编辑器Git暂存区的使用

    平时在开发时候 一般线上环境和线下环境区别会很大,所以一下线下的自己测试环境的代码没有如果提交会影响线上环境,所以一般都会使用git的一个暂存区作为临时存放不需要提交的代码,这样每次提交代码都可以在不 ...

  8. BFS以及hash表判重的应用~

    主要还是讲下hash判重的问题吧 这道题目用的是除法求余散列方式 前几天看了下算法导论 由于我们用的是线性再寻址的方式来解决冲突问题 所以hash表的大小(余数的范围)要包含我们要求的范围 对mod的 ...

  9. jvm常用命令

    jps // 查看Java进程ID和main方法类名 jstack <进程ID> // 查看该进程的所有栈信息 jstack -l <进程ID> // 查看该进程的所有栈信息, ...

  10. jquery.serializejson.min.js的妙用

    关于这个jquery.serializejson.min.js插件来看,他是转json的一个非常简单好用的插件. 前端在处理含有大量数据提交的表单时,除了使用Form直接提交刷新页面之外,经常碰到的需 ...