noi.ac #536 打地鼠
题目链接:戳我
【问题描述】
小A在玩打地鼠游戏。有一个n×m的网格,每个位置上地鼠都会要么冒出头要么缩进去。地鼠很狡猾,每次小A选一个地鼠冒出头的格子(x,y)把它打下去,但同一行同一列的地鼠全都会冒出头来。
小A发现这个游戏好像怎么都玩不完。这个时候小B过来向他展示真正的技术了。小B当然也知道这游戏是玩不完的,于是他准备了两个状态,并准备向小A表演把状态1进行若干次打地鼠操作变成状态2。
现在小B想知道他会不会翻车。
【输入格式】
第一行两个整数n,m表示棋盘大小n行m列。
接下来n行,每行一个长为m的字符串描述初始状态,'O'表示地鼠冒出头来,'X'表示地鼠缩了进去。
接下来n行,每行一个长为m的字符串描述结束状态,格式同上。
【输出格式】
如果能从初始状态变成目标状态输出1,否则输出0。
【样例输入】
4 4
XOOO
XXXX
XOOX
XOXO
OXOO
XOOO
XOOO
OOOO
【样例输出】
1
【数据规模】
subtask1(20'):n,m≤4。
subtask2(30'):n,m≤50。
subtask3(50'):n,m≤1000。
用黑色表示缩下去,白色表示冒出头。
每次操作相当于选一个白的变成黑的,但这行这列都会变成白的。
考虑倒着做。用灰色表示可能是黑也可能是白。
那么操作就变成了:选一个黑色或灰色的,必须满足这行这列除了它没有黑色,把它变成白色并把这行这列变成灰色。
注意到要操作一个黑色时,这行这列除了它就没有黑色了,所以操作之间不会干扰,直接能做就做就行了。
最后判下灰色的行列的交界处必须至少有一个白色(要进行第一步操作)。其它位置必须对应相等。
还要特判下如果一开始两个状态就相等输出1。
复杂度O(nm)。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
#define mp make_pair
#define MAXN 1010
using namespace std;
int n,m;
int a[MAXN][MAXN],b[MAXN][MAXN],cnt_hang[MAXN],cnt_lie[MAXN];
int done[MAXN][MAXN],done_hang[MAXN],done_lie[MAXN];
char s[MAXN][MAXN],t[MAXN][MAXN];
queue<pair<int,int> >q;
//倒着做 相当于把0变成1 QAQ
inline bool check_the_same()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(a[i][j]!=b[i][j]) return false;
return true;
}
inline bool check_s()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(a[i][j]!=0) return false;
return true;
}
inline bool check_t()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(b[i][j]!=1) return false;
return true;
}
inline void paint(int x,int y)
{
if(!done_hang[x])
{
done_hang[x]=1;
for(int j=1;j<=m;j++)
{
if(j==y) continue;
b[x][j]=-1;
if(!cnt_lie[j]) q.push(mp(x,j));
}
}
if(!done_lie[y])
{
done_lie[y]=1;
for(int i=1;i<=n;i++)
{
if(i==x) continue;
b[i][y]=-1;
if(!cnt_hang[i]) q.push(mp(i,y));
}
}
}
inline bool solve()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(b[i][j]==0&&cnt_hang[i]==1&&cnt_lie[j]==1)
{
q.push(mp(i,j));
b[i][j]=-1;
done[i][j]=1;
}
while(!q.empty())
{
int u_x=q.front().first;
int u_y=q.front().second;
q.pop();
paint(u_x,u_y);
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(b[i][j]!=-1&&a[i][j]!=b[i][j])
return false;
return true;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
#endif
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%s",s[i]+1);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
if(s[i][j]=='O') a[i][j]=1;
else a[i][j]=0;
}
for(int i=1;i<=n;i++) scanf("%s",t[i]+1);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
if(t[i][j]=='O') b[i][j]=1;
else b[i][j]=0,cnt_hang[i]++,cnt_lie[j]++;
}
if(check_the_same()) printf("1\n");
else if(check_s()||check_t()) printf("0\n");
else if(solve()) printf("1\n");
else printf("0\n");
return 0;
}
noi.ac #536 打地鼠的更多相关文章
- # NOI.AC省选赛 第五场T1 子集,与&最大值
NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...
- NOI.ac #31 MST DP、哈希
题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...
- NOI.AC NOIP模拟赛 第五场 游记
NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...
- NOI.AC NOIP模拟赛 第六场 游记
NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...
- NOI.AC NOIP模拟赛 第二场 补记
NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...
- NOI.AC NOIP模拟赛 第一场 补记
NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...
- NOI.AC NOIP模拟赛 第四场 补记
NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...
- NOI.AC NOIP模拟赛 第三场 补记
NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...
- NOI.AC WC模拟赛
4C(容斥) http://noi.ac/contest/56/problem/25 同时交换一行或一列对答案显然没有影响,于是将行列均从大到小排序,每次处理限制相同的一段行列(呈一个L形). 问题变 ...
随机推荐
- Spring 的 Bean 管理(XML 方式)
Spring 的 Bean 管理(XML 方式) 1. 三种实例化 Bean 的方式 使用类构造器实例化(默认无参数) 使用静态工厂方法实例化(简单工厂模式) 使用实例工厂方法实例化(工厂方法模式) ...
- 03docker镜像
docker的镜像操作 Union文件系统是Docker镜像的基础. UnionFS(联合文件系统):Union文件系统是一种分层,轻量级并且高性能的文件系统.它支持对文件系统的修改作为一次提交来一层 ...
- C#绘图、画笔相关
dg.SmoothingMode = SmoothingMode.HighSpeed; //高质量 dg.PixelOffsetMode = PixelOffsetMode.HighSpeed; // ...
- 在Win10上运行ESXI-Comstomer
在Win10上运行ESXI-Comstomer 来源 https://www.v-front.de/p/esxi-community-packaging-tools.html ESXi-Customi ...
- SVN客户端(TortoiseSVN)保存密码自动登录后,如何切换使用其它帐户登录方法
清除SVN客户端(TortoiseSVN)保存的认证信息(用户名和密码) 1.选择TortoiseSVN---->Settings. 2.点"Clear” ,清空Authenticat ...
- 4.图片左轮播图(swiper)
一.html部分 二.js部分 三.源代码部分 <body> <div id="box"> <img src="imges/111.jpg& ...
- 通俗易懂的axios
get的两种请求: methods:{ //axios.get的发送参数有两种,两个ajax请求函数都可实现 sendGetByStr(){ //1.get通过直接发字符串拼接 axios.get(` ...
- TVM调试指南
1. TVM安装 这部分之前就写过,为了方便,这里再复制一遍. 首先下载代码 git clone --recursive https://github.com/dmlc/tvm 这个地方最好使用--r ...
- JPanel实现滚动条
之前一直用JScrollPane里面放一个JTextArea,就可以在文本框内实现滚动条. 但是最近做一个小demo,需要在JPanel中实现滚动条,就找了下资料,做好了,现在记录一下,防止以后再用到 ...
- Flume下读取kafka数据后再打把数据输出到kafka,利用拦截器解决topic覆盖问题
1:如果在一个Flume Agent中同时使用Kafka Source和Kafka Sink来处理events,便会遇到Kafka Topic覆盖问题,具体表现为,Kafka Source可以正常从指 ...