1200 同余方程 2012年NOIP全国联赛提高组

时间限制: 1 s

空间限制: 128000 KB

题目等级 : 钻石 Diamond

题目描述 Description

求关于 x 同余方程 ax ≡ 1 (mod b)的最小正整数解。

输入描述 Input Description

输入只有一行,包含两个正整数 a, b,用 一个 空格隔开。

输出描述 Output Description

输出只有一行包含一个正整数x0,即最小正整数解,输入数据保证一定有解。

样例输入 Sample Input

3 10

样例输出 Sample Output

7

数据范围及提示 Data Size & Hint

【数据范围】

对于 40% 的数据, 2 ≤b≤ 1,000 ;

对于 60% 的数据, 2 ≤b≤ 50,000,000

对于 100% 的数据, 2 ≤a, b≤ 2,000,000,000

分类标签 Tags

欧几里德定理 数论 大陆地区 NOIP全国联赛提高组 2012年

/*
求关于x的模线性方程
ax≡1(mod b)的最小正整数解.
我们可以转化求不定方程ax+by=1的根来求.
若方程有整数解 则gcd(a,b)=1(即 1|gcd(a,b)).
求出一组解(x0,y0).
然后特殊地此题gcd(a,b)=1.
so x+b/gcd(a,b)等价于x+b.
又因为是mod b的剩余系中.
so ans=(x+b)%b.
观察此式 可知x是a关于mod y剩余系下的逆元.
若b为质数 则由费马小定理
a^(p-1)=1,可知a^(p-2)为逆元.
*/
#include<iostream>
#include<cstdio>
#define LL long long
using namespace std;
LL x,y;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
void ex_gcd(LL a,LL b,LL &x,LL &y)
{
if(!b) {x=1,y=0;return ;}
else ex_gcd(b,a%b,y,x),y-=(a/b)*x;
}
int main()
{
LL a,b;
a=read(),b=read();
ex_gcd(a,b,x,y);
cout<<(x+b)%b;
return 0;
}
/*
看到网上有这种做法.
挺巧妙的.
由欧拉函数性质:a^phi(b)%b=1.
so a*a^(phi(b)-1)%b=1.
so 该方程的解为x=a^(phi(b)-1).
so 在mod b剩余系下
最小正整数解为x=a^(phi(b)-1)%b.
然后枚举因子求phi(b),快速幂求a^(phi(b)-1)%b.
特殊地若b为质数
由欧拉函数性质phi(b)=b-1.
即求a^(b-2)%b.(和费马小定理的结论一样....)
*/
#include<iostream>
#include<cstdio>
#define LL long long
using namespace std;
LL x,y,s,ans,a,b;
inline LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
void eu()
{
LL n=b;
ans=n;
for(int i=2;i*i<=n;i++)
{
if(!(n%i))
{
while(!(n%i)) n/=i;
ans=ans/i*(i-1);
}
}
if(n>1) ans=ans/n*(n-1);
}
LL mi(LL a,LL p)
{
LL tot=1;
while(p)
{
if(p&1) tot=tot*a%b;
a=a*a%b;
p>>=1;
}
return tot;
}
int main()
{
a=read(),b=read();
eu();
ans=mi(a,ans-1)%b;
cout<<ans;
return 0;
}

Codevs 1200 同余方程 2012年NOIP全国联赛提高组的更多相关文章

  1. codevs 1200 同余方程 2012年NOIP全国联赛提高组 x

    /*我在提交的时候发现了一个特别好玩的事,有兴趣的话,可以自己尝试一下:把下面说的地方的y=0改为y=1在codevs里面能够ac,这……数据水?到一定境界……厉害了,吓得我还以为自己对了,结果一讲才 ...

  2. 1200 同余方程 2012年NOIP全国联赛提高组

    题目描述 Description 求关于 x 同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入描述 Input Description 输入只有一行,包含两个正整数 a, b,用 一个 空 ...

  3. 同余方程 2012年NOIP全国联赛提高组

    时间限制: 1 s   空间限制: 128000 KB 题目描述 Description 求关于 x 同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入描述 Input Descriptio ...

  4. Codevs 1218 疫情控制 2012年NOIP全国联赛提高组

    1218 疫情控制 2012年NOIP全国联赛提高组 时间限制: 2 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description H 国有 n 个城市,这 ...

  5. Codevs 1217 借教室 2012年NOIP全国联赛提高组

    1217 借教室 2012年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 在大学期间,经常需要租借教 ...

  6. Codevs 1198 国王游戏 2012年NOIP全国联赛提高组

    1198 国王游戏 2012年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 恰逢 H 国国庆,国王邀 ...

  7. 开车旅行 2012年NOIP全国联赛提高组(倍增+set)

    开车旅行 2012年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond     题目描述 Description 小A 和小B决定利用 ...

  8. Codevs 3289 花匠 2013年NOIP全国联赛提高组

    3289 花匠 2013年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 花匠栋栋种了一排花,每株花都 ...

  9. Codevs 1171 潜伏者 2009年NOIP全国联赛提高组

    1171 潜伏者 2009年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description [问题描述] R 国和S 国正陷 ...

随机推荐

  1. Python的IDE之Jupyter的使用

    Python的IDE之Jupyter的使用 今天给大家分享的是Jupyter安装和基本使用教程,同时在我安装的过程中遇到了一些问题,解决方法,一并和大家分享 一.Jupyter介绍 Jupyter N ...

  2. centos服务器之间相互挂载(samba)

    前提:假设A服务器ip为:192.168.1.101 ,B服务器ip为:192.168.1.102现在要求把A服务器的/mnt/test 路径下的文件夹 共享到B服务器的/home/ceshi 下. ...

  3. 基于C#开发的扩展按钮控件

    最近在准备一套自定义控件开发的课程,下面将第一个做的按钮控件分享给大家. 其实这个控件属于自定义控件中的扩展控件,与组合控件和GDI+开发的控件不同,这个控件是继承原生的Button, 这个控件的目的 ...

  4. c# 获取屏幕图片

    Rectangle bounds = Screen.GetBounds(Screen.GetBounds(Point.Empty)); using (Bitmap bitmap = new Bitma ...

  5. JS基础_打印99乘法表

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  6. Facebook 一个热搜帖,美国一个老人癌症不治最后的心愿是跟儿子喝啤酒。

    今天早上起床看到这个Facebook上的热搜帖.太感动了.这个老人癌症不治后最后心愿是跟他的儿子们一起喝一次啤酒.这个帖子被他孙子贴上网以后牵动了千万人的心.

  7. [Scala] java使用scala的jar包问题:Exception in thread "main" java.lang.ClassCastException: java.lang.Integer cannot be cast to java.lang.Short

    场景 刚写的scala处理bmp文件的实验, 打了jar包让java调用一下, 结果发生这个错误. package org.tanglizi.bmp.demo; import org.tanglizi ...

  8. 帝国cms 从数据库删除端口

    phome_enewsmoreport  这个表控制着帝国cms多端口.

  9. javascript是否像php一样有isset和empty?

    javascript是否像php一样有isset和empty? is set()在php中用于检测是否设置了变量木浴桶,函数返回布尔值true/false.在javascript中,您可以用替换它!( ...

  10. How to: Compile Linux kernel 2.6

      Compiling custom kernel has its own advantages and disadvantages. However, new Linux user / admin ...