Codevs 1200 同余方程 2012年NOIP全国联赛提高组
1200 同余方程 2012年NOIP全国联赛提高组
时间限制: 1 s
空间限制: 128000 KB
题目等级 : 钻石 Diamond
题目描述 Description
求关于 x 同余方程 ax ≡ 1 (mod b)的最小正整数解。
输入描述 Input Description
输入只有一行,包含两个正整数 a, b,用 一个 空格隔开。
输出描述 Output Description
输出只有一行包含一个正整数x0,即最小正整数解,输入数据保证一定有解。
样例输入 Sample Input
3 10
样例输出 Sample Output
7
数据范围及提示 Data Size & Hint
【数据范围】
对于 40% 的数据, 2 ≤b≤ 1,000 ;
对于 60% 的数据, 2 ≤b≤ 50,000,000
对于 100% 的数据, 2 ≤a, b≤ 2,000,000,000
分类标签 Tags
欧几里德定理 数论 大陆地区 NOIP全国联赛提高组 2012年
/*
求关于x的模线性方程
ax≡1(mod b)的最小正整数解.
我们可以转化求不定方程ax+by=1的根来求.
若方程有整数解 则gcd(a,b)=1(即 1|gcd(a,b)).
求出一组解(x0,y0).
然后特殊地此题gcd(a,b)=1.
so x+b/gcd(a,b)等价于x+b.
又因为是mod b的剩余系中.
so ans=(x+b)%b.
观察此式 可知x是a关于mod y剩余系下的逆元.
若b为质数 则由费马小定理
a^(p-1)=1,可知a^(p-2)为逆元.
*/
#include<iostream>
#include<cstdio>
#define LL long long
using namespace std;
LL x,y;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
void ex_gcd(LL a,LL b,LL &x,LL &y)
{
if(!b) {x=1,y=0;return ;}
else ex_gcd(b,a%b,y,x),y-=(a/b)*x;
}
int main()
{
LL a,b;
a=read(),b=read();
ex_gcd(a,b,x,y);
cout<<(x+b)%b;
return 0;
}
/*
看到网上有这种做法.
挺巧妙的.
由欧拉函数性质:a^phi(b)%b=1.
so a*a^(phi(b)-1)%b=1.
so 该方程的解为x=a^(phi(b)-1).
so 在mod b剩余系下
最小正整数解为x=a^(phi(b)-1)%b.
然后枚举因子求phi(b),快速幂求a^(phi(b)-1)%b.
特殊地若b为质数
由欧拉函数性质phi(b)=b-1.
即求a^(b-2)%b.(和费马小定理的结论一样....)
*/
#include<iostream>
#include<cstdio>
#define LL long long
using namespace std;
LL x,y,s,ans,a,b;
inline LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
void eu()
{
LL n=b;
ans=n;
for(int i=2;i*i<=n;i++)
{
if(!(n%i))
{
while(!(n%i)) n/=i;
ans=ans/i*(i-1);
}
}
if(n>1) ans=ans/n*(n-1);
}
LL mi(LL a,LL p)
{
LL tot=1;
while(p)
{
if(p&1) tot=tot*a%b;
a=a*a%b;
p>>=1;
}
return tot;
}
int main()
{
a=read(),b=read();
eu();
ans=mi(a,ans-1)%b;
cout<<ans;
return 0;
}
Codevs 1200 同余方程 2012年NOIP全国联赛提高组的更多相关文章
- codevs 1200 同余方程 2012年NOIP全国联赛提高组 x
/*我在提交的时候发现了一个特别好玩的事,有兴趣的话,可以自己尝试一下:把下面说的地方的y=0改为y=1在codevs里面能够ac,这……数据水?到一定境界……厉害了,吓得我还以为自己对了,结果一讲才 ...
- 1200 同余方程 2012年NOIP全国联赛提高组
题目描述 Description 求关于 x 同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入描述 Input Description 输入只有一行,包含两个正整数 a, b,用 一个 空 ...
- 同余方程 2012年NOIP全国联赛提高组
时间限制: 1 s 空间限制: 128000 KB 题目描述 Description 求关于 x 同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入描述 Input Descriptio ...
- Codevs 1218 疫情控制 2012年NOIP全国联赛提高组
1218 疫情控制 2012年NOIP全国联赛提高组 时间限制: 2 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description H 国有 n 个城市,这 ...
- Codevs 1217 借教室 2012年NOIP全国联赛提高组
1217 借教室 2012年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 在大学期间,经常需要租借教 ...
- Codevs 1198 国王游戏 2012年NOIP全国联赛提高组
1198 国王游戏 2012年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 恰逢 H 国国庆,国王邀 ...
- 开车旅行 2012年NOIP全国联赛提高组(倍增+set)
开车旅行 2012年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 小A 和小B决定利用 ...
- Codevs 3289 花匠 2013年NOIP全国联赛提高组
3289 花匠 2013年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 花匠栋栋种了一排花,每株花都 ...
- Codevs 1171 潜伏者 2009年NOIP全国联赛提高组
1171 潜伏者 2009年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description [问题描述] R 国和S 国正陷 ...
随机推荐
- python私有化xx、_xx、__xx、__xx__、xx_的区别
xx:共有变量. _xx:私有化的属性或方法,from xxx import * 时无法导入,子类的对象和子类可以访问. __xx:避免与子类中的属性命名冲突,无法在外部直接访问(名字重整所以访问不到 ...
- 手动导入jar到本地mvn仓库
<dependency> <groupId>com.oracle</groupId> <artifactId>ojdbc6</artifactId ...
- 安装consul-client+registrator
安装registrator 下载镜像这里必须要注意:registrator的lastest版本已经2年没更新了,他的最新主板本是master,一定要注意,因为旧的版本无法发现跟自己不是同一个网络的容器 ...
- luogu题解P1032字串变换--BFS+STL:string骚操作
题目链接 https://www.luogu.org/problemnew/show/P1032 分析 这题本来很裸的一个BFS,发现其中的字符串操作好烦啊.然后就翻大佬题解发现用STL中的strin ...
- [CSS] w3c 盒模型 和 IE 盒模型
- 解决Eclipse中springBoot中文乱码问题
除了常见的application.properties文件中设置#设置spring-boot 编码格式banner.charset=UTF-8server.tomcat.uri-encoding=UT ...
- JAVA语言程序设计课后习题----第二单元解析(仅供参考)
1 注意不同类型转换 import java.util.Scanner; public class Ch02 { public static void main(String[] args) { Sc ...
- 网络基础篇之NAT(原理)
一.NAT的产生 由于网络的飞速发展和网络应用的极速增多,致使IPv4可用地址空间逐渐枯竭.尽管IPv6可以在根本上解决地址枯竭问题,但IPv4发展到IPv6还需要一个过渡,而这便产生了NAT. 二. ...
- python自学笔记之开源小工具:SanicDB介绍
SanicDB 是为 Python的异步 Web 框架 Sanic 方便操作MySQL而开发的工具,是对 aiomysql.Pool 的轻量级封装.Sanic 是异步IO的Web框架,同时用异步IO读 ...
- python函数:函数使用原则、定义与调用形式
一.函数初始 二.函数的使用原则 三.函数的定义与调用形式 四.函数的返回值 五.函数参数的使用 一.函数初始 # 须知一: # 硬盘空间无法修改,硬盘中的数据更新都是用新的内容覆盖旧的内容 # 内存 ...