Codevs 1200 同余方程 2012年NOIP全国联赛提高组
1200 同余方程 2012年NOIP全国联赛提高组
时间限制: 1 s
空间限制: 128000 KB
题目等级 : 钻石 Diamond
题目描述 Description
求关于 x 同余方程 ax ≡ 1 (mod b)的最小正整数解。
输入描述 Input Description
输入只有一行,包含两个正整数 a, b,用 一个 空格隔开。
输出描述 Output Description
输出只有一行包含一个正整数x0,即最小正整数解,输入数据保证一定有解。
样例输入 Sample Input
3 10
样例输出 Sample Output
7
数据范围及提示 Data Size & Hint
【数据范围】
对于 40% 的数据, 2 ≤b≤ 1,000 ;
对于 60% 的数据, 2 ≤b≤ 50,000,000
对于 100% 的数据, 2 ≤a, b≤ 2,000,000,000
分类标签 Tags
欧几里德定理 数论 大陆地区 NOIP全国联赛提高组 2012年
/*
求关于x的模线性方程
ax≡1(mod b)的最小正整数解.
我们可以转化求不定方程ax+by=1的根来求.
若方程有整数解 则gcd(a,b)=1(即 1|gcd(a,b)).
求出一组解(x0,y0).
然后特殊地此题gcd(a,b)=1.
so x+b/gcd(a,b)等价于x+b.
又因为是mod b的剩余系中.
so ans=(x+b)%b.
观察此式 可知x是a关于mod y剩余系下的逆元.
若b为质数 则由费马小定理
a^(p-1)=1,可知a^(p-2)为逆元.
*/
#include<iostream>
#include<cstdio>
#define LL long long
using namespace std;
LL x,y;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
void ex_gcd(LL a,LL b,LL &x,LL &y)
{
if(!b) {x=1,y=0;return ;}
else ex_gcd(b,a%b,y,x),y-=(a/b)*x;
}
int main()
{
LL a,b;
a=read(),b=read();
ex_gcd(a,b,x,y);
cout<<(x+b)%b;
return 0;
}
/*
看到网上有这种做法.
挺巧妙的.
由欧拉函数性质:a^phi(b)%b=1.
so a*a^(phi(b)-1)%b=1.
so 该方程的解为x=a^(phi(b)-1).
so 在mod b剩余系下
最小正整数解为x=a^(phi(b)-1)%b.
然后枚举因子求phi(b),快速幂求a^(phi(b)-1)%b.
特殊地若b为质数
由欧拉函数性质phi(b)=b-1.
即求a^(b-2)%b.(和费马小定理的结论一样....)
*/
#include<iostream>
#include<cstdio>
#define LL long long
using namespace std;
LL x,y,s,ans,a,b;
inline LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
void eu()
{
LL n=b;
ans=n;
for(int i=2;i*i<=n;i++)
{
if(!(n%i))
{
while(!(n%i)) n/=i;
ans=ans/i*(i-1);
}
}
if(n>1) ans=ans/n*(n-1);
}
LL mi(LL a,LL p)
{
LL tot=1;
while(p)
{
if(p&1) tot=tot*a%b;
a=a*a%b;
p>>=1;
}
return tot;
}
int main()
{
a=read(),b=read();
eu();
ans=mi(a,ans-1)%b;
cout<<ans;
return 0;
}
Codevs 1200 同余方程 2012年NOIP全国联赛提高组的更多相关文章
- codevs 1200 同余方程 2012年NOIP全国联赛提高组 x
/*我在提交的时候发现了一个特别好玩的事,有兴趣的话,可以自己尝试一下:把下面说的地方的y=0改为y=1在codevs里面能够ac,这……数据水?到一定境界……厉害了,吓得我还以为自己对了,结果一讲才 ...
- 1200 同余方程 2012年NOIP全国联赛提高组
题目描述 Description 求关于 x 同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入描述 Input Description 输入只有一行,包含两个正整数 a, b,用 一个 空 ...
- 同余方程 2012年NOIP全国联赛提高组
时间限制: 1 s 空间限制: 128000 KB 题目描述 Description 求关于 x 同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入描述 Input Descriptio ...
- Codevs 1218 疫情控制 2012年NOIP全国联赛提高组
1218 疫情控制 2012年NOIP全国联赛提高组 时间限制: 2 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description H 国有 n 个城市,这 ...
- Codevs 1217 借教室 2012年NOIP全国联赛提高组
1217 借教室 2012年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 在大学期间,经常需要租借教 ...
- Codevs 1198 国王游戏 2012年NOIP全国联赛提高组
1198 国王游戏 2012年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 恰逢 H 国国庆,国王邀 ...
- 开车旅行 2012年NOIP全国联赛提高组(倍增+set)
开车旅行 2012年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 小A 和小B决定利用 ...
- Codevs 3289 花匠 2013年NOIP全国联赛提高组
3289 花匠 2013年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 花匠栋栋种了一排花,每株花都 ...
- Codevs 1171 潜伏者 2009年NOIP全国联赛提高组
1171 潜伏者 2009年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description [问题描述] R 国和S 国正陷 ...
随机推荐
- Django-choices字段值对应关系(性别)-MTV与MVC科普-Ajax发json格式与文件格式数据-contentType格式-Ajax搭配sweetalert实现删除确认弹窗-自定义分页器-批量插入-07
目录 models 字段补充 choices 参数/字段(用的很多) MTV与MVC模型 科普 Ajax 发送 GET.POST 请求的几种常见方式 用 Ajax 做一个小案例 准备工作 动手用 Aj ...
- 并不对劲的复健训练-bzoj5301:loj2534:p4462 [CQOI2018]异或序列
题目大意 给出一个序列\(a_1,...,a_n\)(\(a,n\leq 10^5\)),一个数\(k\)(\(k\leq 10^5\)),\(m\)(\(m\leq10^5\))次询问,每次询问给\ ...
- C3.js入门案例
C3.js是基于D3.js开发的JavaScript库,它可以让开发者构建出可复用的图表,并且还提供了一系列图表上的交互行为.通过C3,只需要往generate函数中传入数据对象就可以轻松的绘制出图表 ...
- O055、Detach Volume 操作
参考https://www.cnblogs.com/CloudMan6/p/5636510.html 本节我们开始学习 Volume Detach 操作,就是将Volume从Instance上 ...
- 原生html、js手写 radio与checkbox 美化
原生html.js手写 radio与checkbox 美化 html <!DOCTYPE html> <html> <head> <meta charse ...
- HTML5之fileReader异步读取文件及文件切片读取
fileReader的方法与事件 fileReade实现图片预加载 fileReade实现文件读取进度条 fileReade的与file.s实现文件切片读取 一.fileReader的方法与事件 1. ...
- VUE神速搭建项目
1.npm install -g vue-cli 全局安装vue-cli脚手架 2.vue init webpack vueTest 初始化一个基于webpack的项目 3.cd vueTest 进入 ...
- 工作总结 [ActionName("ss123")] 更改路由中Action名称 获取或设置操作的名称
- LSPro建立PXE环境
一.安装和配置tftp服务 1.安装tftp-hpa ipkg install tftp-hpa tftp-hpa主要的配置文件有两个: /opt/etc/xinetd.conf /opt ...
- IoT 设备通信安全讨论
IoT 设备通信安全讨论 作者:360CERT 0x00 序言 IoT 设备日益增多的今天,以及智能家居这一话题愈发火热,智能家居市场正在飞速的壮大和发展,无数 IoT 设备正在从影片中不断的走向用户 ...