poj  1568:Find the Winning Move   【迭代博弈+搜索+剪枝】

题面省略。。。

Input

The input contains one or more test cases, followed by a line beginning with a dollar sign that signals the end of the file. Each test case begins with a line containing a question mark and is followed by four lines representing the board; formatting is exactly as shown in the example. The characters used in a board description are the period (representing an empty space), lowercase x, and lowercase o. For each test case, output a line containing the (row, column) position of the first forced win for x, or '#####' if there is no forced win. Format the output exactly as shown in the example.

Output

For this problem, the first forced win is determined by board position, not the number of moves required for victory. Search for a forced win by examining positions (0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), ..., (3, 2), (3, 3), in that order, and output the first forced win you find. In the second test case below, note that x could win immediately by playing at (0, 3) or (2, 0), but playing at (0, 1) will still ensure victory (although it unnecessarily delays it), and position (0, 1) comes first.

Sample Input

?
....
.xo.
.ox.
....
?
o...
.ox.
.xxx
xooo

....
....
....
.... (再加一组特殊样例)
$

Sample Output

#####
(0,1)
#####

大致题意::

    给定一个四乘四的棋盘,面对一个残局;问先手再下一步是否可以达成最终的胜利;若可以则输出按顺序的坐标最小的那个。

解决思路:

    (我给起的名字是博弈搜索算法,其实是极大极小搜索算法!)

    博弈迭代思想+搜索+剪枝。
    思路解释起来很麻烦,简单说就是:枚举先手一步,针对新加的新手一步--然后判断是否后手无论怎么下就注定是死局......

注意:

   1、在迭代的过程中,平局也是后手胜,因为题目仅要求先手是否面对的是必赢局!
         2、我的博客专栏胡搞里也有相关的可以瞅瞅!http://www.cnblogs.com/zhazhaacmer/category/1137385.html

带注释的题解(第二种check()为超时的判断局面的函数):
 
 char mp[][];
int check(int x,int y,char mp[][]){ //判定新更改的点(x,y)是否会构成胜利的局面,两斜/横/竖
if(x==y&&mp[][]!='.'&&mp[][]==mp[][]&&mp[][]==mp[][]&&mp[][]==mp[][])
return (mp[][]=='x'?:);
if(x+y==&&mp[][]!='.'&&mp[][]==mp[][]&&mp[][]==mp[][]&&mp[][]==mp[][])
return (mp[][]=='x'?:);
if(mp[x][]!='.'&&mp[x][]==mp[x][]&&mp[x][]==mp[x][]&&mp[x][]==mp[x][])
return (mp[x][]=='x'?:);
if(mp[][y]!='.'&&mp[][y]==mp[][y]&&mp[][y]==mp[][y]&&mp[][y]==mp[][y])
return (mp[][y]=='x'?:);
}
/* !!下面这种判断是否可以达到结束的局面的方法,时间复杂度高,毕竟把整个图跑了两遍!
int check1(char mp[4][5]){ //三种返回值,0表示前者,1表示后者,-1表示平局
for(int i=0;i<=3;i++){
if(mp[i][0]!='.'&&mp[i][0]==mp[i][1]&&mp[i][1]==mp[i][2]&&mp[i][2]==mp[i][3])
return (mp[i][0]=='x'?0:1);
}
for(int i=0;i<=3;i++){
if(mp[0][i]!='.'&&mp[0][i]==mp[1][i]&&mp[1][i]==mp[2][i]&&mp[2][i]==mp[3][i])
return (mp[0][i]=='x'?0:1);
}
if(mp[0][0]!='.'&&mp[0][0]==mp[1][1]&&mp[1][1]==mp[2][2]&&mp[2][2]==mp[3][3])
return (mp[0][0]=='x'?0:1);
if(mp[0][3]!='.'&&mp[0][3]==mp[1][2]&&mp[1][2]==mp[2][1]&&mp[2][1]==mp[3][0])
return (mp[0][3]=='x'?0:1); for(int i=0;i<=3;i++){
for(int j=0;j<=3;j++){
if(mp[i][j]=='.')
return -1;
}
}
return 1;//假设整个棋盘全部布满,平局就也是后者赢!
}
*/
int check_whole(){ // //判断全局都是点'.',若是则一定是平局,此种特例不特判必定超时
for(int i=;i<=;i++){
for(int j=;j<=;j++)
if(mp[i][j]!='.')
return false;
}
return true;
}
int ansx,ansy;//记录第一次下的点的x和y坐标,也就是step=0的时候! bool dfs(int x,int y,int op,int step){//对于op来说,先手X: 0要求必赢,后手1要求不败即可!
char ch = (op==)?'x':'o'; int val=check(x,y,mp);
if(val==op)
return true;
else if(val==!op)
return false; for(int i=;i<=;i++){
for(int j=;j<=;j++){
if(mp[i][j]=='.'){
mp[i][j]=ch;
if(dfs(i,j,!op,step+)==false){
mp[i][j]='.';
// printf("****step=%d****%d,%d ch=%c\n",step,i,j,(op==0)?'x':'o');
if(step==){
ansx=i;ansy=j;
}
return true;
}
mp[i][j]='.';
}
}
} return false;
} int main(){
char ch[];
while(scanf("%s",ch),ch[]!='$'){
for(int i=;i<=;i++)
scanf("%s",mp[i]);
if(check_whole()==true)//特判一次!全图都为点时,不忽略的话注定超时!
printf("#####\n");
else if(dfs(,,,)==true)
printf("(%d,%d)\n",ansx,ansy);
else
printf("#####\n");
} return ;
}

(头文件都回家过五一喽了!QWQ)

 

【迭代博弈+搜索+剪枝】poj-1568--Find the Winning Move的更多相关文章

  1. POJ 1568 Find the Winning Move

    Find the Winning Move 链接 题意: 4*4的棋盘,给出一个初始局面,问先手有没有必胜策略? 有的话输出第一步下在哪里,如果有多个,按(0, 0), (0, 1), (0, 2), ...

  2. POJ 1568 Find the Winning Move(极大极小搜索)

    题目链接:http://poj.org/problem?id=1568 题意:给出一个4*4的棋盘,x和o两人轮流放.先放够连续四个的赢.给定一个局面,下一个轮到x放.问x是否有必胜策略?若有,输出能 ...

  3. poj 1568 Find the Winning Move 极大极小搜索

    思路:用极大极小搜索解决这样的问题很方便!! 代码如下: #include <cstdio> #include <algorithm> #define inf 10000000 ...

  4. 搜索+剪枝——POJ 1011 Sticks

    搜索+剪枝--POJ 1011 Sticks 博客分类: 算法 非常经典的搜索题目,第一次做还是暑假集训的时候,前天又把它翻了出来 本来是想找点手感的,不想在原先思路的基础上,竟把它做出来了而且还是0 ...

  5. UVA 529 - Addition Chains,迭代加深搜索+剪枝

    Description An addition chain for n is an integer sequence  with the following four properties: a0 = ...

  6. [Vijos1308]埃及分数(迭代加深搜索 + 剪枝)

    传送门 迭代加深搜索是必须的,先枚举加数个数 然后搜索分母 这里有一个强大的剪枝,就是确定分母的范围 #include <cstdio> #include <cstring> ...

  7. 搜索 + 剪枝 --- POJ 1101 : Sticks

    Sticks Problem's Link:   http://poj.org/problem?id=1011 Mean: http://poj.org/problem?id=1011&lan ...

  8. 搜索+剪枝 POJ 1416 Shredding Company

    POJ 1416 Shredding Company Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5231   Accep ...

  9. 迭代加深搜索 POJ 1129 Channel Allocation

    POJ 1129 Channel Allocation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14191   Acc ...

随机推荐

  1. AWS 数据库(七)

    数据库概念 关系型数据库 关系数据库提供了一个通用接口,使用户可以使用使用 编写的命令或查询从数据库读取和写入数据. 关系数据库由一个或多个表格组成,表格由与电子表格相似的列和行组成. 以行列形式存储 ...

  2. Django_静态文件的配置(STATIC_URL)

    静态文件,常用在head中,可动态的去检索settings里面的STATIC_URL = '/static/',然后做拼接settings.py中 STATIC_URL = '/static9/' # ...

  3. 任务调度之Quartz.Net配置文件

    前面介绍的任务的创建执行是通过代码来实现的,当要添加一个任务的时候就非常的不灵活,做不到热插拔.而通过配置文件的方式实现配置化,可以做到在添加一个任务的话,我们可以新建一个类库来定义Job做到热插拔. ...

  4. 用mkdocs在gitee码云上建立一个简单的文档博客

    利用mkdocs建立简单的文档博客 一.概述 MkDocs 是一个用于创建项目文档的 快速, 简单 , 完美华丽 的静态站点生成器. 文档源码使用 Markdown 来撰写, 用一个 YAML 文件作 ...

  5. Scratch零基础起步攻略(一)

    通常,类似这样的文章开头总要阐述一大段关于编程的重要性,还有自己的专业性.权威性等等,我就都省掉了…… 简单介绍一下自己,从事计算机编程教育前前后后有近20年了,面对了不同年龄层次的学员,大部分跟着我 ...

  6. 集合并卷积的三种求法(分治乘法,快速莫比乌斯变换(FMT),快速沃尔什变换(FWT))

    也许更好的阅读体验 本文主要内容是对武汉市第二中学吕凯风同学的论文<集合幂级数的性质与应用及其快速算法>的理解 定义 集合幂级数 为了更方便的研究集合的卷积,引入集合幂级数的概念 集合幂级 ...

  7. AtCoder Grand Contest 034

    A:如果C在D左侧,显然先让B到达终点再让A走即可,否则先判断一下A是否可以在某处超过B.也就是先判断一下起点与终点之间是否有连续的障碍,若有则无解:然后若C在D左侧输出Yes,否则判断B和D之间是否 ...

  8. Tomcat HTTP connector和AJP connector

    Tomcat服务器通过Connector连接器组件与客户程序建立连接,“连接器”表示接收请求并返回响应的端点.即Connector组件负责接收客户的请求,以及把Tomcat服务器的响应结果发送给客户. ...

  9. 用ASP.NET Web API技术开发HTTP接口(一)

    开发工具 Visual Studio 2013 SQL Server 2008 R2 准备工作 启动Visual Studio 2013,新建一个ASP.NET Web应用程序,命名为SimpleAP ...

  10. C/C++ cmake example

    学习 Golang,有时需要 Cgo,所以需要学习 C.C++. 语言入门: https://item.jd.com/12580612.html https://item.jd.com/2832653 ...