百度大脑EdgeBoard计算卡基于Resnet50/Mobile-SSD模型的性能评测
ResNet模型
前言
在上一次的测试中,我们从头开始训练了一个三个卷积层串联一个全连接层的输出,作为猫狗分类的预测的模型,这次我们自己训练一个ResNet模型,并在以下三个环境中进行性能的对比
- AIStudio CPU: 2 Cores 8GB Memory
- AIStudio GPU: V100 16GB VMem
- Edgeboard
训练模型
模型使用AIStudio 进行训练,训练和预测代码如下
RESNET:https://aistudio.baidu.com/aistudio/projectdetail/67775
MOBILE:https://aistudio.baidu.com/aistudio/projectdetail/67776
按照之前我们的做法,导出model文件和param文件。
测试结果
我们执行预测,忽略掉预处理的速度,仅仅计算模型前向传播的时间。
对于AIstudio平台,我们计算以下代码的运行时间
label = exe.run(inference_program, feed={feed_target_names[0]: tensor_img}, fetch_list=fetch_targets)
对于Edgeboard上面的PaddleMobile,我们计算以下代码的运行时间
PaddleTensor tensor;
tensor.shape = std::vector({1, input_channel, input_width, input_height});
tensor.data = PaddleBuf(data, sizeof(data));
tensor.dtype = PaddleDType::FLOAT32;
std::vector paddle_tensor_feeds(1, tensor);
PaddleTensor tensor_out;
tensor_out.shape = std::vector({});
tensor_out.data = PaddleBuf();
tensor_out.dtype = PaddleDType::FLOAT32;
std::vector outputs(1, tensor_out);
predictor->Run(paddle_tensor_feeds, &outputs);
以下为两个模型的评测数据
ResNet
Edgeboard:
CPU:
GPU:
Mobile_Net
Edgeboard:
GPU:
CPU:
总结:
下表为两个模型预测速度的对比,从中来看,其速度相对于V100的GPU甚至还有一定的优势,让人难以相信。个人的分析是由于以下几个原因
- Paddle-mobile较为启动预测,与AIstudio的完整版Paddlepaddle相比有启动效率上的优势,AIstudio启动预测可能较慢。
- 整个预测模型batch size相当于1,发挥不出GPU的优势。
- 部署预算按三年算的话,GPU V100价格大概是10万,CPU 1万, EdgeBoard 5千,性价比还是蛮高的。
我在进行模型预测的时候,使用钳表对功率进行了大概的估计(条件有限),钳表的读数在0.6A-8A之间变化。结合使用的12V适配器,我大概估计Edgeboard的功耗为8W.
以8W的功耗,在单张图片的预测速度上面领先了几十倍功耗的GPU与CPU。Edgeboard的表现还是令我比较惊喜。本来想继续移植一个前段时间的大尺度的分割网络Unet进行尝试,想继续试试他最大可以跑的模型大小,但似乎Edgeboard目前还不支持分割,存在了一定遗憾。
另外我在进行调试的时候,发现过有几个发布版本的固件不是很稳定,有些op有些问题。还发现了Edgeboard在我的两台笔记本电脑上网络不是很稳定,经常出现相互无法ping通的情况,更换PC后正常,暂时还没发现为什么。
Edgeboard是我第一款接触的嵌入式神经网络加速设备。Paddle-mobile也是我接触的第一个移动端神经网络框架,也是我接触的第一个基于FPGA实现的加速框架。从我了解这个框架到现在仅仅不到半年的时间,已经发布了多个模型转换工具,降低了开发难度,并且支持EasyDL这种方式。虽然目前仍然有一些不成熟的坑需要填,不过相信在软件的迭代下面,它能成为一个很好的嵌入式原型设计平台。
Mobile-SSD 模型
这次我们自己训练一个 Mobilenet-SSD 模型,增加了不同输入维度的情况下,模型运行效率的对比
AIStudio CPU: 2 Cores 8GB Memory
AIStudio GPU: V100 16GB VMem
Edgeboard
训练模型
模型使用AIStudio提供的官方工程 进行训练,训练和预测代码如下
Mobilenet-SSD:https://aistudio.baidu.com/aistudio/projectdetail/41752
按照之前我们的做法,导出model文件和param文件。
运行预测
我们执行预测,忽略掉预处理的速度,仅仅计算模型前向传播的时间。
对于AIstudio平台,我们计算以下代码的运行时间
label = exe.run(inference_program, feed={feed_target_names[0]: tensor_img}, fetch_list=fetch_targets)
对于Edgeboard上面的PaddleMobile,我们计算以下代码的运行时间
PaddleTensor tensor;
tensor.shape = std::vector({1, input_channel, input_width, input_height});
tensor.data = PaddleBuf(data, sizeof(data));
tensor.dtype = PaddleDType::FLOAT32;
std::vector paddle_tensor_feeds(1, tensor);
PaddleTensor tensor_out;
tensor_out.shape = std::vector({});
tensor_out.data = PaddleBuf();
tensor_out.dtype = PaddleDType::FLOAT32;
std::vector outputs(1, tensor_out);
predictor->Run(paddle_tensor_feeds, &outputs);
以下图片为预测结果,由于时间有限,没有很细致去训练模型,仅仅对比了模型运行的速度。
下表为模型在不同维度下的预测速度的对比,从中来看,其速度相对于V100的GPU基本处于同一个数量级,远远领先与GPU
在之前的文章里我们提到,本来想继续移植一个前段时间的大尺度的分割网络Unet进行尝试,想继续试试他最大可以跑的模型大小,但似乎Edgeboard目前还不支持分割,所以我们更换了目标检测网络进行尝试。在mobilenet-SSD这个模型上,Edgeboard最大可以跑到700*700的输入维度,并且能保持在16fps之上(不包含输入图像的语出过程),基本上具有实时性。
之前我提到的,在我的两台笔记本电脑上网络不是很稳定,经常出现相互无法ping通的情况,目前经过试验之后,发现问题为板子的网卡在与不支持千兆的网卡进行通信时候,不能正确的协商,仍然使用千兆模式,使用以下命令固定为百兆即可正常连接
ethtool -s eth0 speed 100 duplex full
Edgeboard是我第一款接触的嵌入式神经网络加速设备。Paddle-mobile也是我接触的第一个移动端神经网络框架,也是我接触的第一个基于FPGA实现的加速框架。从我了解这个框架到现在仅仅不到半年的时间,已经发布了多个模型转换工具,降低了开发难度,并且支持EasyDL这种方式。虽然目前仍然有一些不成熟的坑需要填,不过相信在软件的迭代下面,它能成为一个很好的嵌入式原型设计平台。
作者:Litchll
百度大脑EdgeBoard计算卡基于Resnet50/Mobile-SSD模型的性能评测的更多相关文章
- 百度大脑EasyEdge端模型生成部署攻略
EasyEdge是百度基于Paddle Mobile研发的端计算模型生成平台,能够帮助深度学习开发者将自建模型快速部署到设备端.只需上传模型,最快2分种即可生成端计算模型并获取SDK.本文介绍Easy ...
- PHP:基于百度大脑api实现OCR文字识别
有个项目要用到文字识别,网上找了很多资料,效果不是很好,偶然的机会,接触到百度大脑.百度大脑提供了很多解决方案,其中一个就是文字识别,百度提供了三种文字识别,分别是银行卡识别.身份证识别和通用文字识别 ...
- 基于双XCKU060+双C6678 的双FMC接口40G光纤传输加速计算卡
基于双XCKU060+双C6678 的双FMC接口40G光纤传输加速计算卡 一.板卡概述 板卡采用基于双FPGA+双DSP的信号采集综合处理硬件平台,板卡大小360mmx217mm.板卡两片FPGA提 ...
- python预课06 基于百度大脑AI的人工智能,百度颜值检测,语音合成与识别
百度大脑: 如下图,百度开放了许多人工智能接口可以使用,先注册一个百度大脑账户 点击创建应用,选择需要的功能,如人脸识别,语音识别等 点击查看文档,可以查看功能对应语言的方法,参数.首先在CMD命令下 ...
- 百度大脑发布“AI开发者‘战疫’守护计划”,AI支援抗疫再升级
面对新冠肺炎疫情,AI开发者们正在积极运用算法.算力.软件等“武器”助力抗疫.针对开发者们在疫情防控期间的开发与学习需求,2月6日,百度大脑推出“AI开发者‘战疫’守护计划”, 正在进行疫情防控相关应 ...
- AI+教育落地,百度大脑如何让校园更智能?
人工智能作为影响社会底层技术革命逐渐向传统行业渗透,“AI+”已经替代“互联网+”成为创业创新的新引擎,出人意料的是,在AI在教育业的率先落地并且相当火爆. 现在,人工智能教育已成为从业者心目中的“教 ...
- 百度大脑UNIT3.0智能对话技术全面解析
智能客服.智能家居.智能助手.智能车机.智能政务……赋予产品智能对话能力是提升产品智能化体验.高效服务的重要手段,已经开始被越来越多的企业关注并布局.然而,智能对话系统搭建涉及NLP.知识图谱.语音等 ...
- 全面解析百度大脑发布“AI开发者‘战疫’守护计划”
即日起,百度大脑发布“AI开发者战疫守护计划” 大疫当前,人人有责,携手开发者共同出击抗击疫情 基于百度大脑AI开放平台和飞桨深度学习平台,积极运用算法.算力.软件等“武器”助力抗疫! 谁能参与计 ...
- 发布AI芯片昆仑和百度大脑3.0、L4自动驾驶巴士量产下线,这是百度All in AI一年后的最新答卷...
机器之心报道,作者:李泽南. 去年的 7 月 5 日,百度在北京国际会议中心开办了首届「AI 开发者大会」.在会上,百度首次喊出了「All in AI」的口号.一年的时间过去了,今天在同样地点举行的第 ...
随机推荐
- 手动模拟实现Spring IOC功能(基于javaConfig风格)
以下文中spring特指spring frameWork项目,不含其它:如spring cloud等. 作为刚开始研究spring源码的小白,对于spring两大核心功能之一的IOC,虽说大致了解了B ...
- Git之GitFlow工作流
一. GitFlow 介绍 1.1 什么是 GitFlow GitFlow 是一种 Git 工作流,它是团队成员遵守的一种代码管理方案 . 1.2 GitFlow 常用分支说明 分支名称 分支说明 P ...
- 数据表与简单java类——一对多映射
例如:给定一个分类表和子分类表 得到如下信息: 1.一个分类的完整信息: 2.根据分类获取其对应的子分类 package Mapping_transformation; class item { pr ...
- Linux目录结构-中部
第1章 /proc目录下 1.1 /proc/cpuinfo 系统cpu信息 [root@nfsnobody ~]# cat /proc/cpuinfo 一般常用的是 ...
- python_网络编程
网络ISO(国际标准化组织)--->网络体系结构标准(OSI模型)OSI: 网络信息传输比较复杂需要很多功能协同-->将功能分开,降低耦合度,让每个模块完成一定的功能-->将这些模块 ...
- Vue 一个注册页面有省市联动
var vm = new Vue({ el: '#complete-info', data: { provinceList: [], selectedProvince: "", c ...
- 有奖投票丨HC2019开发者关注的TOP10问题你最想听哪个?
目前,人工智能已经成为广大开发者重点关注的技术领域.然而,随着人工智能技术的快速发展,AI应用场景复杂度在与日俱增,算法调教也亟需不断成熟,这些都为开发者们带来了更多全新的挑战.如何快速把握前沿技术的 ...
- Frida用法之函数操作
Frida接口功能介绍 Frida是个so级别的hook框架,它可以帮助开发.安全人员对指定的进程的so模块进行分析.它主要提供了功能简单的Python接口和功能丰富的JS接口,使得hook函数和 ...
- 基于Java语言的IO操作(文件复制)
public static void main(String[] args) { //获取复制开始前系统时间毫秒值 long start=System.currentTimeMillis(); //文 ...
- CF 1132A,1132B,1132C,1132D,1132E,1132F(Round 61 A,B,C,D,E,F)题解
A.Regular bracket sequence A string is called bracket sequence if it does not contain any characters ...