100天搞定机器学习|Day2简单线性回归分析
第一天机器学习100天|Day1数据预处理,我们学习了数据预处理。知道了,数据预处理是机器学习中最基础和最麻烦,未来占用时间最长的一步操作。数据预处理一般有六个步骤,导入库、导入数据集、处理缺失值、分类数据转化、分出训练集和测试集、特征缩放等。在处理数据过程中,必须得两个库是numpy和pandas,也用到sklearn.preprocessing中的Imputer,LabelEncoder, OneHotEncoder,StandardScaler。

算法本身很简单,之前也有文章做过算法的解读,有兴趣的同学请移步:
机器学习算法Python实现--线性回归分析
很早之前还用R做过一个R语言教程之-线性回归
下面开始,四步搞定简单线性回归分析
第一步:数据预处理

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
dataset = pd.read_csv('studentscores.csv')
X = dataset.iloc[ : , : 1 ].values
Y = dataset.iloc[ : , 1 ].values
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size = 1/4, random_state = 0)
第二步:训练集使用简单线性回归模型来训练

from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor = regressor.fit(X_train, Y_train)
sklearn是机器学习的神器,之前有过介绍
Sklearn包含的常用算法
LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=1)
fit_intercept:是否计算截距。
normalize: 当fit_intercept设置为False时,该参数将被忽略。 如果为真,则回归前的回归系数X将通过减去平均值并除以l2-范数而归一化。
copy_X:布尔数,可选,默认为真,如果为真,X会被拷贝,反之,会被覆盖。
n_jobs:指定线程数
第三步:预测结果

LinearRegression官网有具体用法,比较简单,不想移步的同学只需知道下面几个用法即可
fit(X,y,sample_weight=None):X,y以矩阵的方式传入,而sample_weight则是每条测试数据的权重,同样以array格式传入。
predict(X):预测方法,将返回预测值y_pred
score(X,y,sample_weight=None):评分函数,将返回一个小于1的得分,可能会小于0
Y_pred = regressor.predict(X_test)
第四步:可视化

训练集结果可视化
plt.scatter(X_train , Y_train, color = 'red')
plt.plot(X_train , regressor.predict(X_train), color ='blue')
plt.show()

测试集结果可视化
plt.scatter(X_test , Y_test, color = 'red')
plt.plot(X_test , regressor.predict(X_test), color ='blue')
plt.show()

100天搞定机器学习|Day2简单线性回归分析的更多相关文章
- 100天搞定机器学习|Day11 实现KNN
机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...
- 100天搞定机器学习|Day8 逻辑回归的数学原理
机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...
- 100天搞定机器学习|Day9-12 支持向量机
机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...
- 100天搞定机器学习|Day16 通过内核技巧实现SVM
前情回顾 机器学习100天|Day1数据预处理100天搞定机器学习|Day2简单线性回归分析100天搞定机器学习|Day3多元线性回归100天搞定机器学习|Day4-6 逻辑回归100天搞定机器学习| ...
- 100天搞定机器学习|Day17-18 神奇的逻辑回归
前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...
- 100天搞定机器学习|Day19-20 加州理工学院公开课:机器学习与数据挖掘
前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...
- 100天搞定机器学习|Day21 Beautiful Soup
前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...
- 100天搞定机器学习|Day22 机器为什么能学习?
前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...
- 100天搞定机器学习|Day33-34 随机森林
前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...
随机推荐
- 在python3下用PIL做图像处理
Python Imaging Library (PIL)是python下的图像处理模块,支持多种格式,并提供强大的图形与图像处理功能. 目前PIL的官方最新版本为1.1.7,支持的版本为python ...
- Jmeter 专题
Jmeter是一个非常好用的压力测试工具. Jmeter用来做轻量级的压力测试,非常合适,只需要十几分钟,就能把压力测试需要的脚本写好. 为什么要建立线程组?原因很简单,因为我们要模拟多个线程(用户 ...
- Matlab随笔之模拟退火算法
问题描述: 我方有一个基地,经度和纬度为( 70,40).假设我方飞机的速度为 1000 公里/小时. 我方派一架飞机从基地出发,侦察完敌方所有目标,再返回原来的基地.在敌方每一目 标点的侦察时间不计 ...
- HierarchicalDataTemplate
针对具有分层数据结构的控件设计的,比如说TreeView,相当于可以每一个层级上做DataTemplate XmlDataProvider:数据源,写在Resources下 <XmlDataPr ...
- 用Delphi将数据导入到Excel并控制Excel
一.调用Excel的方法:一般情况下有两种方法调用Excel:1. 直接使用Delphi自带的组件:在Form中分别放入ExcelApplication, ExcelWorkbook和ExcelWo ...
- 模拟QQ窗口抖动效果(通过MoveWindow和Sleep进行模拟)
RECT rtWindow; GetWindowRect(&rtWindow); //long x = 400; //long y = 200; long x = rtWindow.left; ...
- centos 6.5 搭建ftp 服务器(vsftpd的配置文件说明)
0x00 如何快速的搭建简易的资源发布站 开启简易的python http服务器 1 2 cd /home/your_path python -m SimpleHTTPServer 8000 开启防火 ...
- WinForm TreeView单击,但是获取的是上一次点击选中的节点
/// <summary> /// MouseDown是鼠标按下事件发生在你鼠标单击事件之前,你单击鼠标发生了两个动作,一是鼠标按下二是鼠标抬起.执行之后,就会把SelectedNode转 ...
- 什么是YAML?
YAML是"YAML不是一种标记语言"的外语缩写 [1] (见前方参考资料原文内容):但为了强调这种语言以数据做为中心,而不是以置标语言为重点,而用返璞词重新命名.它是一种直观的能 ...
- 反射:获取枚举类型的Name,Value,Description
[Obsolete("请使用新的方法XXX")] //使用Obsolete特性来告诉使用者这是一个过期的方法 private static void Test() { Type t ...