想想常见的分类算法有决策树、Logistic回归、SVM、贝叶斯等。分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应。但是很多时候上述条件得不到满足,尤其是在处理海量数据的时候,如果通过预处理使得数据满足分类算法的要求,则代价非常大,想想如果给你50个G这么大的文本,里面已经分好词,这时需要将其按照给定的几十个关键字进行划分归类,监督学习的方法确实有点困难,而且也不划算,前期工作做得太多了。

这时候可以考虑使用聚类算法,我们只需要知道这几十个关键字是什么就可以了。聚类属于无监督学习,相比于分类,聚类不依赖预定义的类和类标号的训练实例。本文首先介绍聚类的基础——距离与相异度,然后介绍一种常见的聚类算法——K-means聚类。

在正式讨论聚类前,我们要先弄清楚一个问题:如何定量计算两个可比较元素间的相异度。前面的这些知识弄懂了,加上K-means的定义,基本上就可以大概理解K-means的算法了,不算一个特别难的算法。用通俗的话说,相异度就是两个东西差别有多大,例如人类与章鱼的相异度明显大于人类与黑猩猩的相异度,这是能我们直观感受到的。但是,计算机没有这种直观感受能力,我们必须对相异度在数学上进行定量定义。

设X={x1,x2,x3,,,,xn},Y={y1,y2,y3,,,,yn} ,其中X,Y是两个元素项,各自具有n个可度量特征属性,那么X和Y的相异度定义为:d=(X,Y)=f(X,Y)->R,其中R为实数域。也就是说相异度是两个元素对实数域的一个映射,所映射的实数定量表示两个元素的相异度。

下面介绍不同类型变量相异度计算方法。

标量

标量也就是无方向意义的数字,也叫标度变量。现在先考虑元素的所有特征属性都是标量的情况。例如,计算X={2,1,102}和Y={1,3,2}的相异度。一种很自然的想法是用两者的欧几里得距离来作为相异度,欧几里得距离的定义如下:

其意义就是两个元素在欧氏空间中的集合距离,因为其直观易懂且可解释性强,被广泛用于标识两个标量元素的相异度。将上面两个示例数据代入公式,可得两者的欧氏距离为:

除欧氏距离外,常用作度量标量相异度的还有曼哈顿距离和闵可夫斯基距离,两者定义如下:

曼哈顿距离:

闵可夫斯基距离:

欧氏距离和曼哈顿距离可以看做是闵可夫斯基距离在p=2和p=1下的特例。

0-1规格化

下面要说一下标量的规格化问题。上面这样计算相异度的方式有一点问题,就是取值范围大的属性对距离的影响高于取值范围小的属性。例如上述例子中第三个属性的取值跨度远大于前两个,这样不利于真实反映真实的相异度,为了解决这个问题,一般要对属性值进行规格化。所谓规格化就是将各个属性值按比例映射到相同的取值区间,这样是为了平衡各个属性对距离的影响。通常将各个属性均映射到[0,1]区间,映射公式为:

其中max(ai)和min(ai)表示所有元素项中第i个属性的最大值和最小值。例如,将示例中的元素规格化到[0,1]区间后,就变成了X’={1,0,1},Y’={0,1,0},重新计算欧氏距离约为1.732。

二元变量

所谓二元变量是只能取0和1两种值变量,有点类似布尔值,通常用来标识是或不是这种二值属性。对于二元变量,上一节提到的距离不能很好标识其相异度,我们需要一种更适合的标识。一种常用的方法是用元素相同序位同值属性的比例来标识其相异度。

设有X={1,0,0,0,1,0,1,1},Y={0,0,0,1,1,1,1,1},可以看到,两个元素第2、3、5、7和8个属性取值相同,而第1、4和6个取值不同,那么相异度可以标识为3/8=0.375。一般的,对于二元变量,相异度可用“取值不同的同位属性数/单个元素的属性位数”标识。

上面所说的相异度应该叫做对称二元相异度。现实中还有一种情况,就是我们只关心两者都取1的情况,而认为两者都取0的属性并不意味着两者更相似。例如在根据病情对病人聚类时,如果两个人都患有肺癌,我们认为两个人增强了相似度,但如果两个人都没患肺癌,并不觉得这加强了两人的相似性,在这种情况下,改用“取值不同的同位属性数/(单个元素的属性位数-同取0的位数)”来标识相异度,这叫做非对称二元相异度。如果用1减去非对称二元相异度,则得到非对称二元相似度,也叫Jaccard系数,是一个非常重要的概念。

分类变量

分类变量是二元变量的推广,类似于程序中的枚举变量,但各个值没有数字或序数意义,如颜色、民族等等,对于分类变量,用“取值不同的同位属性数/单个元素的全部属性数”来标识其相异度。

序数变量

序数变量是具有序数意义的分类变量,通常可以按照一定顺序意义排列,如冠军、亚军和季军。对于序数变量,一般为每个值分配一个数,叫做这个值的秩,然后以秩代替原值当做标量属性计算相异度。

向量

对于向量,由于它不仅有大小而且有方向,所以闵可夫斯基距离不是度量其相异度的好办法,一种流行的做法是用两个向量的余弦度量,这个应该大家都知道吧,其度量公式为:

其中||X||表示X的欧几里得范数。要注意,余弦度量度量的不是两者的相异度,而是相似度!

什么是聚类?

所谓聚类问题,就是给定一个元素集合D,其中每个元素具有n个可观察属性,使用某种算法将D划分成k个子集,要求每个子集内部的元素之间相异度尽可能低,而不同子集的元素相异度尽可能高。其中每个子集叫做一个

与分类不同,分类是示例式学习,要求分类前明确各个类别,并断言每个元素映射到一个类别,而聚类是观察式学习,在聚类前可以不知道类别甚至不给定类别数量,是无监督学习的一种。目前聚类广泛应用于统计学、生物学、数据库技术和市场营销等领域,相应的算法也非常的多。本文仅介绍一种最简单的聚类算法——k均值(k-means)算法

k均值算法的计算过程非常直观:

1、从D中随机取k个元素,作为k个簇的各自的中心。

2、分别计算剩下的元素到k个簇中心的相异度,将这些元素分别划归到相异度最低的簇。

3、根据聚类结果,重新计算k个簇各自的中心,计算方法是取簇中所有元素各自维度的算术平均数。

4、将D中全部元素按照新的中心重新聚类。

5、重复第4步,直到聚类结果不再变化。

6、将结果输出。

时间复杂度:O(T*n*k*m)

空间复杂度:O(n*m)

n:元素个数,k:第一步中选取的元素个数,m:每个元素的特征项个数,T:第5步中迭代的次数

参考:

T2噬菌体(很多理解都是借鉴这位大牛的,还在阅读学习TA的其他博文)

K-means聚类--百度百科

聚类算法之K-means的更多相关文章

  1. 数据挖掘十大算法--K-均值聚类算法

    一.相异度计算  在正式讨论聚类前,我们要先弄清楚一个问题:怎样定量计算两个可比較元素间的相异度.用通俗的话说.相异度就是两个东西区别有多大.比如人类与章鱼的相异度明显大于人类与黑猩猩的相异度,这是能 ...

  2. 机器学习中K-means聚类算法原理及C语言实现

    本人以前主要focus在传统音频的软件开发,接触到的算法主要是音频信号处理相关的,如各种编解码算法和回声消除算法等.最近切到语音识别上,接触到的算法就变成了各种机器学习算法,如GMM等.K-means ...

  3. 机器学习实战(Machine Learning in Action)学习笔记————06.k-均值聚类算法(kMeans)学习笔记

    机器学习实战(Machine Learning in Action)学习笔记————06.k-均值聚类算法(kMeans)学习笔记 关键字:k-均值.kMeans.聚类.非监督学习作者:米仓山下时间: ...

  4. 03-01 K-Means聚类算法

    目录 K-Means聚类算法 一.K-Means聚类算法学习目标 二.K-Means聚类算法详解 2.1 K-Means聚类算法原理 2.2 K-Means聚类算法和KNN 三.传统的K-Means聚 ...

  5. ML: 聚类算法-K均值聚类

    基于划分方法聚类算法R包: K-均值聚类(K-means)                   stats::kmeans().fpc::kmeansruns() K-中心点聚类(K-Medoids) ...

  6. 基于改进人工蜂群算法的K均值聚类算法(附MATLAB版源代码)

    其实一直以来也没有准备在园子里发这样的文章,相对来说,算法改进放在园子里还是会稍稍显得格格不入.但是最近邮箱收到的几封邮件让我觉得有必要通过我的博客把过去做过的东西分享出去更给更多需要的人.从论文刊登 ...

  7. 【转】算法杂货铺——k均值聚类(K-means)

    k均值聚类(K-means) 4.1.摘要 在前面的文章中,介绍了三种常见的分类算法.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应.但是很多时 ...

  8. K均值聚类算法的MATLAB实现

    1.K-均值聚类法的概述    之前在参加数学建模的过程中用到过这种聚类方法,但是当时只是简单知道了在matlab中如何调用工具箱进行聚类,并不是特别清楚它的原理.最近因为在学模式识别,又重新接触了这 ...

  9. Kmeans算法的K值和聚类中心的确定

    0 K-means算法简介 K-means是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一. K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类.通过迭代的 ...

  10. 聚类算法:K均值、凝聚层次聚类和DBSCAN

    聚类分析就仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组(簇).其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的.组内相似性越大,组间差别越大,聚类就越好. 先介绍下聚类的不 ...

随机推荐

  1. JavaScript 运行机制以及Event Loop(事件循环)

    一.JavaScript单线程 众所周知JavaScript是一门单线程语言,也就是说,在同一时间内JS只能做一件事.为什么JavaScript不能有多个线程呢?这样不是能够提高效率吗? JavaSc ...

  2. PythonWeb框架Django:虚拟环境安装(virtualenv)

    虚拟环境的用处: 当我们有多个项目要使用不同的第三方类库的时候,就会发生冲突,因为Python的环境内只允许一个版本的第三方类库. 比如说 有A,B两个Web项目,但是A项目的Django的环境为2. ...

  3. FineReport - 软件安装部署

    FineReport 软件安装与部署 FineReport试用码申请 在浏览器中输入网址:http://www.finereport.com/,进入帆软官网首页,点击免费试用,填写相关信息后,既可以收 ...

  4. JAVA实现读取图片

    话不读说  直接上代码 package cn.kgc.ssm.common; import java.io.*; /** * @author * @create 2019-08-15 9:36 **/ ...

  5. python控制窗口对角线运动

    import win32con import win32gui import time while True: time.sleep(1) notepad = win32gui.FindWindow( ...

  6. 牛客2018国庆集训派对Day3 I Metropolis 多源最短路径

    传送门:https://www.nowcoder.com/acm/contest/203/I 题意: 求每个大都会到最近的一个大都会的距离. 思路: 把每个大都会设为起点,跑一遍最短路.在跑最短路的时 ...

  7. 牛客小白月赛6 G 指纹锁 set的自动排序 模板

    链接:https://www.nowcoder.com/acm/contest/136/G来源:牛客网 题目描述     HA实验有一套非常严密的安全保障体系,在HA实验基地的大门,有一个指纹锁.   ...

  8. codeforces 816 E. Karen and Supermarket(树形dp)

    题目链接:http://codeforces.com/contest/816/problem/E 题意:有n件商品,每件有价格ci,优惠券di,对于i>=2,使用di的条件为:xi的优惠券需要被 ...

  9. Atcoder D - Black and White Tree(树dp+博弈)

    题目链接:http://agc014.contest.atcoder.jp/tasks/agc014_d 题意:有一棵树先手涂白色,后手涂黑色,直到不能再涂为止.涂完后再把所有黑色直接相邻的白色都变成 ...

  10. 洛谷 题解 P3871 【[TJOI2010]中位数】

    这题先定义一个大根堆(maxn)维护mid(n为奇数mid+1)的元素.再定义一个小根堆(minn)维护mid(n为奇数mid+1)到n的元素.然后对于插入元素的情况进行分类讨论. 当add x时 一 ...