最近用numpy比较多,边用边自己总结用法。

1. 数组

1.1 生成 m行 * n列 的随机数组

import numpy as np

# 生成 m行*n列 的随机数组
# np.random.random((m, n))
# 生成一个3行2列的随机数组,想让它看起来大一点,在后面乘50
print(np.random.random((3, 2)) * 50)

1.2 生成一组随机样本点,样本点的个数为n

np.random.rand(n)

示例:

>>> np.random.rand(10)   # 生成一个有10个样本点的随机数组
array([0.8769499 , 0.70305017, 0.23591552, 0.6060884 , 0.33132381,
0.37187465, 0.31462118, 0.54622967, 0.25750118, 0.42270614])

1.3 array.shape:返回数组的行列数

# 生成一个两行三列的数组
array1 = np.random.random((2, 3))
# 输出数组的行列数
print(array1.shape)

输出:

(2, 3)

1.4

np.float32()和np.float64的区别
数位的区别,一个在内存中占分别32和64个bits,也就是4bytes或8bytes
数位越高浮点数的精度越高

1.5 np.hstack(tuple):将数组沿水平方向堆叠

def func1():
arr1 = np.array([[1, 2, 3], [4, 5, 6]])
arr2 = np.array([[1, 2, 3], [4, 5, 6]])
# print(arr1.shape)
new_arr = np.hstack((arr1, arr2))
print(new_arr.shape)
print(new_arr) return if __name__ == '__main__':
func1()

结果:

(2, 3)
(2, 6)
[[1 2 3 1 2 3]
[4 5 6 4 5 6]]

1.6 np.random.shuffle(arr):将数组打乱顺序(只打乱最外层)

def func2():
arr = np.arange(10)
print(arr)
np.random.shuffle(arr)
print(arr) return if __name__ == '__main__':
func2()

结果:

[0 1 2 3 4 5 6 7 8 9]
[3 9 0 5 6 1 8 4 7 2]

1.7 np.arange

自己总结numpy用法的更多相关文章

  1. numpy用法小结

    前言 个人感觉网上对numpy的总结感觉不够详尽细致,在这里我对numpy做个相对细致的小结吧,在数据分析与人工智能方面会有所涉及到的东西在这里都说说吧,也是对自己学习的一种小结! numpy用法的介 ...

  2. python科学计算包numpy用法(一)

    numpy是python中一个用来做科学计算的包,用起来十分方便,下面是我总结的numpy的用法: 1.如何创建矩阵 创建矩阵有很多种方法,主要包括以下几种: 通过array函数创建 >> ...

  3. Numpy 用法小结

    1.  asarray 函数 可以将输入数据转化为矩阵格式. 输入数据可以是(列表,元组,列表的列表,元组的元组,元组的列表等这些数组形式). >>> asarray([(1,2,3 ...

  4. numpy用法归纳

    1.生成数组 import numpy as np 把python列表转换为数组 >>> np.array([1, 2, 3]) array([1, 2, 3]) 把python的r ...

  5. numpy用法

    NumPy中创建特殊值 np.nan    np.inf nan表示数据空缺   inf表示无穷 参考:https://www.cnblogs.com/haoxi/p/9175781.html

  6. numpy用法介绍-未完待续

    简介 NumPy(Numerical Python简称) 是高性能科学计算和数据分析的基础包 为什么使用? 标准安装的Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元 ...

  7. pandas用法小结

    前言 个人感觉网上对pandas的总结感觉不够详尽细致,在这里我对pandas做个相对细致的小结吧,在数据分析与人工智能方面会有所涉及到的东西在这里都说说吧,也是对自己学习的一种小结! pandas用 ...

  8. 前置机器学习(四):一文掌握Pandas用法

    Pandas提供快速,灵活和富于表现力的数据结构,是强大的数据分析Python库. 本文收录于机器学习前置教程系列. 一.Series和DataFrame Pandas建立在NumPy之上,更多Num ...

  9. 数据分析——pandas

    简介 import pandas as pd # 在数据挖掘前一个数据分析.筛选.清理的多功能工具 ''' pandas 可以读入excel.csv等文件:可以创建Series序列,DataFrame ...

随机推荐

  1. hibernate的查询方式的介绍(一)

    1.对象导航查询 2.OID查询 3.hql(hibernate query language)查询 4.QBC查询 5.本地sql查询 在这里先介绍其中两种 1.hibernate的对象导航查询 ( ...

  2. luogu P2135 方块消除 |dp

    题目描述 Jimmy最近迷上了一款叫做方块消除的游戏.游戏规则如下:n个带颜色方格排成一列,相同颜色的方块连成一个区域(如果两个相邻方块颜色相同,则这两个方块属于同一区域).为简化题目,将连起来的同一 ...

  3. [TimLinux] JavaScript 给表单提前之前进行验证的方法

    1. onSubmit事件 这个事件是注册到form表单上的,不是注册在input type="submit"这个input按钮上面的. 2. 注册方式 HTML内部注册:< ...

  4. python 金融应用(一)期权定价公式的计算

    一.基于不付息的欧式期权看涨BSM公式 假定股票服从下列微分方程: 期权定价公式: 二.蒙特卡洛模拟 import numpy as np import math from time import t ...

  5. Selenium之显式、隐式等待

    selenium自动化页面元素存在异常发生的原因有以下几点: ① 页面加载时间过慢,需要查找的元素程序已经完成,但是页面还未加载成功.此时可以加载页面等待时间. ② 查找的元素没有在当前的iframe ...

  6. linux-export

    使自定义普通变量转换为环境变量: 1. env查看环境变量 2. 设置临时环境变量,关机重启时不生效. export path=$path:/usr/sbin/ 3. 修改profile文件,关机重启 ...

  7. linux—chmod

    chmod -options -c 只输出被改变的文件信息      -f , --silent, --quite   当chmod不能改变文件模式时,不通知用户      -R   递归       ...

  8. jquery (对内容,元素,属性,class的操作)

    对内容的操作: 捕获:获得内容 text() - 设置或返回所选元素的文本内容html() - 设置或返回所选元素的内容(包括 HTML 标记)val() - 设置或返回表单字段的值. 设置:设置内容 ...

  9. autocad 二次开发 最小包围圆算法

    autocad 二次开发 最小包围圆算法 主要实现了在模型空间下的得到一个包围所有图元的最小圆,该算法的思路是这样:1.从点集中随机选出两个点作为直径对圆进行初始化.2.判断下一个点p是否在圆中,如果 ...

  10. 如何在Sublime中打开左侧文件夹导航

    Sublime中我们可以通过菜单栏的View->Side Bar->Hide Side Bar(Show Side Bar)来显示和隐藏左侧的导航栏,如下图所示. 但是,这里只会显示当前打 ...