最近用numpy比较多,边用边自己总结用法。

1. 数组

1.1 生成 m行 * n列 的随机数组

import numpy as np

# 生成 m行*n列 的随机数组
# np.random.random((m, n))
# 生成一个3行2列的随机数组,想让它看起来大一点,在后面乘50
print(np.random.random((3, 2)) * 50)

1.2 生成一组随机样本点,样本点的个数为n

np.random.rand(n)

示例:

>>> np.random.rand(10)   # 生成一个有10个样本点的随机数组
array([0.8769499 , 0.70305017, 0.23591552, 0.6060884 , 0.33132381,
0.37187465, 0.31462118, 0.54622967, 0.25750118, 0.42270614])

1.3 array.shape:返回数组的行列数

# 生成一个两行三列的数组
array1 = np.random.random((2, 3))
# 输出数组的行列数
print(array1.shape)

输出:

(2, 3)

1.4

np.float32()和np.float64的区别
数位的区别,一个在内存中占分别32和64个bits,也就是4bytes或8bytes
数位越高浮点数的精度越高

1.5 np.hstack(tuple):将数组沿水平方向堆叠

def func1():
arr1 = np.array([[1, 2, 3], [4, 5, 6]])
arr2 = np.array([[1, 2, 3], [4, 5, 6]])
# print(arr1.shape)
new_arr = np.hstack((arr1, arr2))
print(new_arr.shape)
print(new_arr) return if __name__ == '__main__':
func1()

结果:

(2, 3)
(2, 6)
[[1 2 3 1 2 3]
[4 5 6 4 5 6]]

1.6 np.random.shuffle(arr):将数组打乱顺序(只打乱最外层)

def func2():
arr = np.arange(10)
print(arr)
np.random.shuffle(arr)
print(arr) return if __name__ == '__main__':
func2()

结果:

[0 1 2 3 4 5 6 7 8 9]
[3 9 0 5 6 1 8 4 7 2]

1.7 np.arange

自己总结numpy用法的更多相关文章

  1. numpy用法小结

    前言 个人感觉网上对numpy的总结感觉不够详尽细致,在这里我对numpy做个相对细致的小结吧,在数据分析与人工智能方面会有所涉及到的东西在这里都说说吧,也是对自己学习的一种小结! numpy用法的介 ...

  2. python科学计算包numpy用法(一)

    numpy是python中一个用来做科学计算的包,用起来十分方便,下面是我总结的numpy的用法: 1.如何创建矩阵 创建矩阵有很多种方法,主要包括以下几种: 通过array函数创建 >> ...

  3. Numpy 用法小结

    1.  asarray 函数 可以将输入数据转化为矩阵格式. 输入数据可以是(列表,元组,列表的列表,元组的元组,元组的列表等这些数组形式). >>> asarray([(1,2,3 ...

  4. numpy用法归纳

    1.生成数组 import numpy as np 把python列表转换为数组 >>> np.array([1, 2, 3]) array([1, 2, 3]) 把python的r ...

  5. numpy用法

    NumPy中创建特殊值 np.nan    np.inf nan表示数据空缺   inf表示无穷 参考:https://www.cnblogs.com/haoxi/p/9175781.html

  6. numpy用法介绍-未完待续

    简介 NumPy(Numerical Python简称) 是高性能科学计算和数据分析的基础包 为什么使用? 标准安装的Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元 ...

  7. pandas用法小结

    前言 个人感觉网上对pandas的总结感觉不够详尽细致,在这里我对pandas做个相对细致的小结吧,在数据分析与人工智能方面会有所涉及到的东西在这里都说说吧,也是对自己学习的一种小结! pandas用 ...

  8. 前置机器学习(四):一文掌握Pandas用法

    Pandas提供快速,灵活和富于表现力的数据结构,是强大的数据分析Python库. 本文收录于机器学习前置教程系列. 一.Series和DataFrame Pandas建立在NumPy之上,更多Num ...

  9. 数据分析——pandas

    简介 import pandas as pd # 在数据挖掘前一个数据分析.筛选.清理的多功能工具 ''' pandas 可以读入excel.csv等文件:可以创建Series序列,DataFrame ...

随机推荐

  1. element table 先显示暂无数据 之后再加载数据 问题

    项目中的表格请求数据时,进去页面,先出现 ''暂无数据'' 字样闪现一下之后在进行加载数据,用户体验十分不好 解决办法: <template> <el-table :data=&qu ...

  2. 八分音符(频率)卷积算子 Octave Convolution

    为什么读此系列文章? 优化数学和计算理论帮助机器学习完成问题分类: 1)按照领域划分,比如计算机视觉,自然语言处理,统计分析预测形: 2)按照算法复杂划分,比如是否是NP-Hard问题,是否需要精确解 ...

  3. 你知道 http 响应头中的 ETag 是如何生成的吗

    关于 etag 的生成需要满足几个条件 当文件不会更改时,etag 值保持不变.所以不能单纯使用 inode 便于计算,不会特别耗 CPU.这样子 hash 不是特别合适 便于横向扩展,多个 node ...

  4. Windows环境下XAMPP的相关设置

    WINDOWS环境下多域名多端口配置:https://www.cnblogs.com/c-and-unity/p/4539348.html

  5. B.Beautiful Numbers

    题意:你被给予了一个序列 p = [p1, p2, ..., pn](1 ~ n的整数),如果存在l, r左右端点(1 <= l <= r <= n),使得[pl, pl+1,... ...

  6. nginx的一些知识(一)

    第8章 web网站的搭建 curl -Lv 网站地址:查看网站的请求信息和响应信息,并且会将结果输出出来 8.1 web网站的的传输原理过程 会进行DNS的解析 进行客户端和服务端进行三次握手协议 客 ...

  7. ARTS-S golang panic返回默认值

    package main import "fmt" func fn_test_panic() (a int) { a = 2 panic("This is panic&q ...

  8. Selenium之勾选框操作

    勾选框操作:       所谓勾选框,意思是可以勾选一个及以上或全部勾选.勾选框的图标一般都是方形的. 复选框勾选一般分为三种情况: ①勾选单个框,我们直接用元素定位的方式定位到点击即可. ②勾选多个 ...

  9. USB3.0 图像视频传输 开发 CYUSB3014开发基础(导入官方例程) 转

    CYPREE提供的FX3_SDK开发包里面有很多基础的内容,除了前面提到的几个pdf文件外,还有三个文件夹,是官方提供的基础例程.学习CYUSB3014应该就从这里开始,从这几个例程开始.例程共有三个 ...

  10. nessus安装、msfconsole辅助模块使用(网安全实训第三天)

    本期内容:nessus安装.msfconsole辅助模块使用.后渗透攻击 1. nessus安装 2.msfconsole辅助模块使用 3.后渗透攻击 1. nessus安装 (1)下载nessus ...