Elasticsearch 技术分析(八):剖析 Elasticsearch 的索引原理
前言
创建索引的时候,我们通过Mapping 映射定义好索引的基本结构信息,接下来我们肯定需要往 ES 里面新增业务文档数据了,例如用户,日志等业务数据。新增的业务数据,我们根据 Mapping 来生成对应的倒排索引信息 。
我们一直说,Elasticsearch是一个基于Apache Lucene 的开源搜索引擎。Elasticsearch的搜索高效的原因并不是像Redis那样重依赖内存的,而是通过建立特殊的索引数据结构--倒排索引实现的。由于它的使用场景:处理PB级结构化或非结构化数据,数据量大且需要持久化防止断电丢失,所以 Elasticsearch 的数据和索引存储是依赖于服务器的硬盘。这也是为什么我们在ES性能调优的时候可以将使用SSD硬盘存储作为其中一个优化项来考虑。
倒排索引的概念,我相信大家都已经知道了,这里就不在赘述,倒排索引可以说是Elasticsearch搜索高效和支持非结构化数据检索的主要原因了,但是倒排索引被写入磁盘后是不可改变 的:它永远不会修改。
段和提交点
倒排索引的不可变性,这点主要是因为 Elasticsearch 的底层是基于 Lucene,而在 Lucene 中提出了按段搜索的概念,将一个索引文件拆分为多个子文件,则每个子文件叫作段,每个段都是一个独立的可被搜索的数据集,并且段具有不变性,一旦索引的数据被写入硬盘,就不可再修改。
段 的概念提出主要是因为:在早期全文检索中为整个文档集合建立了一个很大的倒排索引,并将其写入磁盘中。如果索引有更新,就需要重新全量创建一个索引来替换原来的索引。这种方式在数据量很大时效率很低,并且由于创建一次索引的成本很高,所以对数据的更新不能过于频繁,也就不能保证时效性。
而且在底层采用了分段的存储模式,使它在读写时几乎完全避免了锁的出现,大大提升了读写性能。说到这,你们可能会想到 ConcurrentHashMap 的分段锁 的概念,其实原理有点类似。
而且 Elasticsearch 中的倒排索引被设计成不可变的,有以下几个方面优势:
- 不需要锁。如果你从来不更新索引,你就不需要担心多进程同时修改数据的问题。
- 一旦索引被读入内核的文件系统缓存,便会留在哪里。由于其不变性,只要文件系统缓存中还有足够的空间,那么大部分读请求会直接请求内存,而不会命中磁盘。这提供了很大的性能提升。
- 其它缓存(像filter缓存),在索引的生命周期内始终有效。它们不需要在每次数据改变时被重建,因为数据不会变化。
- 写入单个大的倒排索引允许数据被压缩,减少磁盘 I/O 和 需要被缓存到内存的索引的使用量。
每一个段本身都是一个倒排索引,但索引在 Lucene 中除表示所有段的集合外,还增加了提交点的概念。
为了提升写的性能,Lucene并没有每新增一条数据就增加一个段,而是采用延迟写的策略,每当有新增的数据时,就将其先写入内存中,然后批量写入磁盘中。若有一个段被写到硬盘,就会生成一个提交点,提交点就是一个列出了所有已知段和记录所有提交后的段信息的文件。

写索引的流程
上面说过 ES 的索引的不变性,还有段和提交点的概念。那么它的具体实现细节和写入磁盘的过程是怎样的呢?

用户创建了一个新文档,新文档被写入内存中。
不时地, 缓存被提交,这时缓存中数据会以段的形式被先写入到文件缓存系统而不是直接被刷到磁盘。
这是因为,提交一个新的段到磁盘需要一个fsync来确保段被物理性地写入磁盘,这样在断电的时候就不会丢失数据。 但是fsync操作代价很大;如果每次索引一个文档都去执行一次的话会造成很大的性能问题,但是这里新段会被先写入到文件系统缓存,这一步代价会比较低。- 新的段被写入到文件缓存系统,这时内存缓存被清空。在文件缓存系统会存在一个未提交的段。虽然新段未被提交(刷到磁盘),但是文件已经在缓存中了, 此时就可以像其它文件一样被打开和读取了。
- 到目前为止索引的段还未被刷新到磁盘,如果没有用
fsync把数据从文件系统缓存刷(flush)到硬盘,我们不能保证数据在断电甚至是程序正常退出之后依然存在。Elasticsearch 增加了一个 translog ,或者叫事务日志,在每一次对 Elasticsearch 进行操作时均进行了日志记录。如上图所示,一个文档被索引之后,就会被添加到内存缓冲区,并且同时追加到了 translog。 每隔一段时间,更多的文档被添加到内存缓冲区和追加到事务日志(translog),之后新段被不断从内存缓存区被写入到文件缓存系统,这时内存缓存被清空,但是事务日志不会。随着 translog 变得越来越大,达到一定程度后索引被刷新,在刷新(flush)之后,段被全量提交,一个提交点被写入硬盘,并且事务日志被清空。

从整个流程我们可以了解到以下几个问题:
- 为什么说 ES 搜索是近实时的?
因为文档索引在从内存缓存被写入到文件缓存系统时,虽然还没有进行提交未被 flush 到磁盘,但是缓冲区的内容已经被写入一个段(segment6)中且新段可被搜索。这就是为什么我们说 Elasticsearch 是近实时搜索: 文档的变化并不是立即对搜索可见,但会在一秒之内变为可见。 - Elasticsearch 是怎样保证更新被持久化在断电时也不丢失数据?
新索引文档被写入到内存缓存时,同时会记录一份到事务日志(translog)中,translog 提供所有还没有被刷到磁盘的操作的一个持久化纪录。当 Elasticsearch 启动的时候, 它会从磁盘中使用最后一个提交点去恢复已知的段,并且会重放 translog 中所有在最后一次提交后发生的变更操作。
translog 也被用来提供实时 CRUD 。当你试着通过ID查询、更新、删除一个文档,它会在尝试从相应的段中检索之前, 首先检查 translog 任何最近的变更。这意味着它总是能够实时地获取到文档的最新版本。
段合并

由于自动刷新流程每秒会创建一个新的段 ,这样会导致短时间内的段数量暴增。而段数目太多会带来较大的麻烦。 每一个段都会消耗文件句柄、内存和cpu运行周期。更重要的是,每个搜索请求都必须轮流检查每个段;所以段越多,搜索也就越慢。
Elasticsearch通过在后台进行段合并来解决这个问题。小的段被合并到大的段,然后这些大的段再被合并到更大的段。

段合并的时候会将那些旧的已删除文档 从文件系统中清除。 被删除的文档(或被更新文档的旧版本)不会被拷贝到新的大段中。
如何更新索引
上文阐述了索引的持久化流程和倒排索引被设定为不可修改以及这样设定的好处。因为它是不可变的,你不能修改它。但是如果你需要让一个新的文档可被搜索,这就涉及到索引的更新了,索引不可被修改但又需要更新,这种看似矛盾的要求,我们需要怎么做呢?
ES 的解决方法就是:用更多的索引。什么意思?就是原来的索引不变,我们对新的文档再创建一个索引。这样说完不知道大家有没有疑惑或者没理解,我们通过图表的方式说明下。
假如我们现有两个日志信息的文档,信息如下:
- Doc 1:the request param is name = 'zhang san' and age is 20.
- Doc 2:the response result is code = 0000 and msg = 'success'.
这时候我们得到的倒排索引内容(省略一部分)是:
| 词项(term) | 文档(Doc) |
|---|---|
| the | doc 1,doc 2 |
| request | doc 1 |
| param | doc 1,doc 2 |
| is | doc 1,doc 2 |
| name | doc 1 |
| response | doc 2 |
| result | doc 2 |
| ... | ... |
如果我们这时新增一个文档 doc 3:the request param is name = 'li si' and sex is femal,或者修改文档 doc 2的内容为:the response result is code = 9999 and msg = 'false'。这时 ES 是如何处理的呢?
正如上文所述的,为了保留索引不变性,ES 会创建一个新的索引,对于新增的文档索引信息如下:
| 词项(term) | 文档(Doc) |
|---|---|
| the | doc 3 |
| request | doc 3 |
| param | doc 3 |
| is | doc 3 |
| name | doc 3 |
| sex | doc 3 |
| ... | ... |
对于修改的文档索引信息如下;
| 词项(term) | 文档(Doc) |
|---|---|
| the | doc 2 |
| response | doc 2 |
| result | doc 2 |
| is | doc 2 |
| code | doc 2 |
| sex | doc 2 |
| ... | ... |
通过增加新的补充索引来反映新近的修改,而不是直接重写整个倒排索引。每一个倒排索引都会被轮流查询到(从最早的开始),查询完后再对结果进行合并。
正如上文所述那样,对于修改的场景来说,同一个文档这时磁盘中同时会有两个索引数据一个是原来的索引,另一个是修改之后的索引。
以正常逻辑来看,我们知道搜索的时候肯定以新的索引为标准,但是段是不可改变的,所以既不能从把文档从旧的段中移除,也不能修改旧的段来进行反映文档的更新。 取而代之的是,每个提交点会包含一个 .del文件,文件中会列出这些被删除文档的段信息。
当一个文档被 “删除” 时,它实际上只是在.del 文件中被 标记 删除。一个被标记删除的文档仍然可以被查询匹配到, 但它会在最终结果被返回前从结果集中移除。
文档更新也是类似的操作方式:当一个文档被更新时,旧版本文档被标记删除,文档的新版本被索引到一个新的段中。 可能两个版本的文档都会被一个查询匹配到,但被删除的那个旧版本文档在结果集返回前就已经被移除。
Elasticsearch 技术分析(八):剖析 Elasticsearch 的索引原理的更多相关文章
- Elasticsearch 技术分析(九):Elasticsearch的使用和原理总结
前言 之前已经分享过Elasticsearch的使用和原理的知识,由于近期在公司内部做了一次内部分享,所以本篇主要是基于之前的博文的一个总结,希望通过这篇文章能让读者大致了解Elasticsearch ...
- 深入浅出分析MySQL MyISAM与INNODB索引原理、优缺点分析
本文浅显的分析了MySQL索引的原理及针对主程面试的一些问题,对各种资料进行了分析总结,分享给大家,希望祝大家早上走上属于自己的"成金之路". 学习知识最好的方式是带着问题去研究所 ...
- SQL优化技术分析-3:SQL语句索引的利用
使用索引来更快地遍历表.默认情况下建立的索引是非聚集索引,但有时它并不是最佳的.在非聚集索引下,数据 在物理上随机存放在数据页上.合理的索引设计要建立在对各种查询的分析和预测上.一般来说: 有大量重复 ...
- Elasticsearch教程(八) elasticsearch delete 删除数据(Java)
Elasticsearch的删除也是很灵活的,下次我再介绍,DeleteByQuery的方式.今天就先介绍一个根据ID删除.上代码. package com.sojson.core.elasticse ...
- 深入浅出分析MySQL MyISAM与INNODB索引原理、优缺点、主程面试常问问题详解
本文浅显的分析了MySQL索引的原理及针对主程面试的一些问题,对各种资料进行了分析总结,分享给大家,希望祝大家早上走上属于自己的"成金之路". 学习知识最好的方式是带着问题去研究所 ...
- mysql七:索引原理与慢查询优化(待完整)
一.介绍 索引在MySQL中也叫做“键”,是存储引擎用于快速找到记录的一种数据结构.索引对于良好的性能非常关键,尤其是当表中的数据量越来越大时,索引对于性能的影响愈发重要. 索引优化应该是对查询性能优 ...
- Elasticsearch-基础介绍及索引原理分析(转载)
最近在参与一个基于Elasticsearch作为底层数据框架提供大数据量(亿级)的实时统计查询的方案设计工作,花了些时间学习Elasticsearch的基础理论知识,整理了一下,希望能对Elastic ...
- Elasticsearch-基础介绍及索引原理分析
介绍 Elasticsearch 是一个分布式可扩展的实时搜索和分析引擎,一个建立在全文搜索引擎 Apache Lucene(TM) 基础上的搜索引擎.当然 Elasticsearch 并不仅仅是 L ...
- Elasticsearch核心技术(四):索引原理分析
本文探讨Elasticsearch的数据请求.路由和写入过程的原理,主要涉及ES的分布式存储架构.节点和副本的写入过程.近实时搜索的原因.持久化机制等. 4.1 ES存储架构 我们经常说,看一件事情千 ...
随机推荐
- 【Java】Java 单文件下载及重命名
代码(仅供参考): /* * 另存为 */ @RequestMapping("/saveAs.do") public @ResponseBody void saveAs(Strin ...
- Android中内存泄露与如何有效避免OOM总结
一.关于OOM与内存泄露的概念 我们在Android开发过程中经常会遇到OOM的错误,这是因为我们在APP中没有考虑dalvik虚拟机内存消耗的问题. 1.什么是OOM OOM:即OutOfMemoe ...
- 【元学习】Meta Learning 介绍
目录 元学习(Meta-learning) 元学习被用在了哪些地方? Few-Shot Learning(小样本学习) 最近的元学习方法如何工作 Model-Agnostic Meta-Learnin ...
- MySQL逻辑架构、SQL加载执行顺序、七种JOIN模式图解
逻辑架构 存储引擎 查看当前安装的mysql提供的存储引擎 查看当前mysql默认的存储引擎 MyISAM和InnoDB SQL加载执行顺序 sql书写顺序 mysql解析器执行的顺序 考点:m ...
- 通过机器学习的线性回归算法预测股票走势(用Python实现)
在本人的新书里,将通过股票案例讲述Python知识点,让大家在学习Python的同时还能掌握相关的股票知识,所谓一举两得.这里给出以线性回归算法预测股票的案例,以此讲述通过Python的sklearn ...
- python中生成器与迭代器
可迭代对象:一个实现了iter方法的对象是可迭代的 迭代器:一个实现了iter方法和next方法的对象就是迭代器 生成器都是Iterator对象,但list.dict.str虽然是Iterable(可 ...
- python 之 pygame
学习pygame如果不了解pygame是什么的可以产考百度或者去官网去看介绍pygame急忙趁着三分的热度,整理一下关于pygame的相关内容,顺便复习一下Markdown编辑器 pygame的介绍 ...
- 面试必问的Synchronized知道这些就可以了
Synchronized关键字算是Java的元老级锁了,一开始它撑起了Java的同步任务,其用法简单粗暴容易上手.但是有些与它相关的知识点还是需要我们开发者去深入掌握的.比如,我们都知道通过Synch ...
- Linux对目录操作命令
cd /home 进入 '/ home' 目录 cd .. 返回上一级目录 cd ../.. 返回上两级目录 cd 进入个人的主目录 cd ~u ...
- 5G:今天不谈技术,谈谈需求和应用
4G改变生活,5G改变社会.随着2019年5G手机的发布,5G时代已经拉开帷幕,无数嗅觉灵敏的投资人和创业者在研究5G行业的投资机会. 但是,市场研究侧重于技术细节与上游产业链设备投资居多,对于贴近消 ...