Leetcode之回溯法专题-37. 解数独(Sudoku Solver)
Leetcode之回溯法专题-37. 解数独(Sudoku Solver)
编写一个程序,通过已填充的空格来解决数独问题。
一个数独的解法需遵循如下规则:
数字 1-9 在每一行只能出现一次。
数字 1-9 在每一列只能出现一次。
数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。
空白格用 '.' 表示。
解法:
分析:
给定一个9*9的char型的二维数组,数组里已经填好了一些数字,要求生成一个数独。
本题可以用回溯法,在空的格子里填下1-9数字,全部填完后,判断是否为数独,是->保存退出,否->回溯,继续循环下一个数字。
判断当前坐标为:(row,col)的坐标点的行,列,方块区内是否满足条件的函数:
public boolean isValid(char board[][],int row, int col, char c) {
for (int i = 0; i < 9; i++) {
if (board[i][col] != '.' && board[i][col] == c)
return false; // 检查行
if (board[row][i] != '.' && board[row][i] == c)
return false; // 检查列
if (board[3 * (row / 3) + i / 3][3 * (col / 3) + i % 3] != '.'
&& board[3 * (row / 3) + i / 3][3 * (col / 3) + i % 3] == c)
return false; // 检查3x3小方格
}
return true;
}
AC代码为(这样写时间复杂有点高,后面再优化):
class Solution {
public boolean isValid(char board[][], int row, int col, char c) {
for (int i = 0; i < 9; i++) {
if (board[i][col] != '.' && board[i][col] == c)
return false; // 检查行
if (board[row][i] != '.' && board[row][i] == c)
return false; // 检查列
if (board[3 * (row / 3) + i / 3][3 * (col / 3) + i % 3] != '.'
&& board[3 * (row / 3) + i / 3][3 * (col / 3) + i % 3] == c)
return false; // 检查3x3小方格
}
return true;
} public boolean isValidSudoku(char[][] board) {
for (int i = 0; i < 9; i++) {
Set<Character> set = new HashSet<>();
boolean flag = true;
for (int j = 0; j < 9; j++) {
char ch = board[i][j];
if (ch == '.')
continue;
if (set.contains(ch) == true) {
flag = false;
}
set.add(ch);
} if (flag == false) {
return false;
}
}
for (int i = 0; i < 9; i++) {
Set<Character> set = new HashSet<>();
boolean flag = true;
for (int j = 0; j < 9; j++) {
char ch = board[j][i];
if (ch == '.')
continue;
if (set.contains(ch) == true) {
flag = false;
}
set.add(ch);
}
if (flag == false) {
return false;
}
} for (int a = 0; a < 3; a++) {
for (int b = 0; b < 3; b++) {
Set<Character> set = new HashSet<>();
boolean flag = true;
for (int i = a * 3; i < a * 3 + 3; i++) {
for (int j = b * 3; j < b * 3 + 3; j++) {
char ch = board[i][j];
if (ch == '.')
continue;
if (set.contains(ch) == true) {
flag = false;
}
set.add(ch); }
}
if (flag == false) {
return false;
}
}
} return true;
} char[][] ans = new char[9][9]; public void solveSudoku(char[][] board) { dfs(board, 0); for (int aa = 0; aa < 9; aa++) {
for (int bb = 0; bb < 9; bb++) {
board[aa][bb] = ans[aa][bb];
}
}
} public void dfs(char[][] board, int x) {
int i = x / 9;
int j = x % 9; if (x == 81) {
for (int aa = 0; aa < 9; aa++) {
for (int bb = 0; bb < 9; bb++) {
ans[aa][bb] = board[aa][bb];
}
}
return;
}
if (board[i][j] != '.') {
dfs(board, x + 1);
} else {
for (int k = 1; k <= 9; k++) {
if (isValid(board, i, j, (char) ('0' + k))) {
board[i][j] = (char) ('0' + k);
dfs(board, x + 1);
board[i][j] = '.';
}
}
} } }
Leetcode之回溯法专题-37. 解数独(Sudoku Solver)的更多相关文章
- Leetcode之回溯法专题-52. N皇后 II(N-Queens II)
Leetcode之回溯法专题-52. N皇后 II(N-Queens II) 与51题的代码80%一样,只不过52要求解的数量,51求具体解,点击进入51 class Solution { int a ...
- Leetcode之回溯法专题-216. 组合总和 III(Combination Sum III)
Leetcode之回溯法专题-216. 组合总和 III(Combination Sum III) 同类题目: Leetcode之回溯法专题-39. 组合总数(Combination Sum) Lee ...
- Leetcode之回溯法专题-212. 单词搜索 II(Word Search II)
Leetcode之回溯法专题-212. 单词搜索 II(Word Search II) 给定一个二维网格 board 和一个字典中的单词列表 words,找出所有同时在二维网格和字典中出现的单词. 单 ...
- Leetcode之回溯法专题-131. 分割回文串(Palindrome Partitioning)
Leetcode之回溯法专题-131. 分割回文串(Palindrome Partitioning) 给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串. 返回 s 所有可能的分割方案. ...
- Leetcode之回溯法专题-90. 子集 II(Subsets II)
Leetcode之回溯法专题-90. 子集 II(Subsets II) 给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明:解集不能包含重复的子集. 示例: 输入 ...
- Leetcode之回溯法专题-79. 单词搜索(Word Search)
Leetcode之回溯法专题-79. 单词搜索(Word Search) 给定一个二维网格和一个单词,找出该单词是否存在于网格中. 单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元 ...
- Leetcode之回溯法专题-78. 子集(Subsets)
Leetcode之回溯法专题-78. 子集(Subsets) 给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明:解集不能包含重复的子集. 示例: 输入: nums = ...
- Leetcode之回溯法专题-77. 组合(Combinations)
Leetcode之回溯法专题-77. 组合(Combinations) 给定两个整数 n 和 k,返回 1 ... n 中所有可能的 k 个数的组合. 示例: 输入: n = 4, k = 2 输 ...
- Leetcode之回溯法专题-51. N皇后(N-Queens)
Leetcode之回溯法专题-51. N皇后(N-Queens) n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给 ...
随机推荐
- C#命名规范(简述)
命名空间,类,事件,接口,常量,属性,方法使用Pascal命名,即首字母大写 参数,变量(类字段)使用camel命名法,即首字母小写. Pascal 方式--所有单词第一个字母大写,其他字母小写. ...
- 什么是WebP以及如何在WordPress中使用WebP图像
图像通常是缓慢加载网页的最大原因之一.它们不仅减慢了加载时间,而且还可以占用服务器上的大量空间和资源.仔细选择文件类型并压缩它们有助于降低加载速度,但它们只能在图像质量受损之前进行优化.另一种选择是使 ...
- 关于JLINK调试时出现的 erasing range....的问题结果方法
声明:本人当然不是提倡盗版. 昨天在使用JLINK的时候遇到了这个问题,但是非常蹊跷,首先可以下载,但不能进入调试,到后来完成不能下载了. 这个问题的原因就是你得Keil检测到你锁使用的JLINK不是 ...
- Mybatis使用动态sql
动态sql 常见的几种:trim.where.set.foreach.if.choose.when 下面通过案例一一演示 if语法 <select id="selectIfTest1& ...
- .net持续集成sonarqube篇之 sonarqube与jenkins集成(插件模式)
系列目录 Jenkins通过插件集成Sonarqube 通过上一节我们了解了如何配置以使jenkins ci环境中可以执行sonarqube构建,其实Sonarqube官方也提供了jenkins插件以 ...
- 使用vsftp与shell实现对进程与服务状态的监控
先说一下需求吧,公司开发了一款新的产品,新产品嘛,有着不得不出问题的理由,四个云机房,总共三百余台机器,需要实时的监控进程状态,虽然有zabbix来实现,但领导需求是脚本和zabbix一起做,zabb ...
- DES、3DES、AES、PBE对称加密算法实现及应用
1.对称加密算法概述 对称加密算法是应用较早的加密算法,技术成熟.在对称加密算法中,数据发信方将明文和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去.收信方收到密文后,若想解读原文 ...
- linux字符设备驱动中内核如何调用驱动入口函数 一点记录
/* 内核如何调用驱动入口函数 ? *//* 答: 使用module_init()函数,module_init()函数定义一个结构体,这个结构体里面有一个函数指针,指向first_drv_init() ...
- Dubbo源码学习之-服务导出
前言 忙的时候,会埋怨学习的时间太少,缺少个人的空间,于是会争分夺秒的工作.学习.而一旦繁忙的时候过去,有时间了之后,整个人又会不自觉的陷入一种懒散的状态中,时间也显得不那么重要了,随便就可以浪费掉几 ...
- 【JDK】JDK源码分析-ReentrantLock
概述 在 JDK 1.5 以前,锁的实现只能用 synchronized 关键字:1.5 开始提供了 ReentrantLock,它是 API 层面的锁.先看下 ReentrantLock 的类签名以 ...