作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处

找时间记录一下利用Gobblin采集kafka数据的过程,话不多说,进入正题

一.Gobblin环境变量准备

需要配置好Gobblin0.7.0工作时对应的环境变量,可以去Gobblin的bin目录的gobblin-env.sh配置,比如

export GOBBLIN_JOB_CONFIG_DIR=~/gobblin/gobblin-config-dir
export GOBBLIN_WORK_DIR=~/gobblin/gobblin-work-dir
export HADOOP_BIN_DIR=/opt/cloudera/parcels/CDH-5.4.0-1.cdh5.4.0.p0.27/lib/hadoop/bin

也可以去自己当前用户bashrc下配置,当然,确保JAVA_HOME也已经配置.

这里配置的Gobblin的配置文件目录和工作目录以及执行MR需要用到的hadoop bin目录

二.Gobblin Standalone模式配置和使用

顾名思义,就是在部署Gobblin的单节点上来采集kafka数据,没有用到Hadoop MR,配置过程如下

首先去GOBBLIN_JOB_CONFIG_DIR下,新建一个gobblinStandalone.pull配置文件,配置如下

job.name=GobblinKafkaQuickStart
job.group=GobblinKafka
job.description=Gobblin quick start job for Kafka
job.lock.enabled=false
job.schedule=0 0/3 * * * ?
kafka.brokers=datanode01:9092
source.class=gobblin.source.extractor.extract.kafka.KafkaSimpleSource
extract.namespace=gobblin.extract.kafka writer.builder.class=gobblin.writer.SimpleDataWriterBuilder
writer.file.path.type=tablename
writer.destination.type=HDFS
writer.output.format=txt data.publisher.type=gobblin.publisher.BaseDataPublisher mr.job.max.mappers=1 metrics.reporting.file.enabled=true
metrics.log.dir=${env:GOBBLIN_WORK_DIR}/metrics
metrics.reporting.file.suffix=txt bootstrap.with.offset=earliest

这里需要配置好抽取数据的kafka broker以及一些gobblin的工作组件,如source,extract,writer,publisher等,不明白的可以参考Gobblin wiki,很详细.

我这里额外配置了一个job.schedule让gobblin三分钟检查一次kafka的所有topic是否有新增,然后抽取任务就会三分钟一次定时执行.这里用的Gobblin自带的Quartz定时器.

ok,配置好以后进入Gobblin根目录,启动命令如:

bin/gobblin-standalone.sh –conffile $GOBBLIN_JOB_CONFIG_DIR/gobblinStandalone.pull start

我这里GOBBLIN_JOB_CONFIG_DIR有多个pull文件,因此需要指明,如果GOBBLIN_JOB_CONFIG_DIR下只有一个配置文件,那么直接bin/gobblin-standalone.sh start即可执行

最终抽取过来的数据会输出到GOBBLIN_WORK_DIR/job-output 中去.

三.Gobblin MapReduce模式配置和使用

这次配置Gobblin会使用MapReduce来抽取kafka数据到Hdfs,新建gobblin-mr.pull文件,配置如下

job.name=GobblinKafkaToHdfs
job.group=GobblinToHdfs1
job.description=Pull data from kafka to hdfs use Gobblin
job.lock.enabled=false
kafka.brokers=datanode01:9092 source.class=gobblin.source.extractor.extract.kafka.KafkaSimpleSource
extract.namespace=gobblin.extract.kafka
topic.whitelist=jsonTest writer.builder.class=gobblin.writer.SimpleDataWriterBuilder
simple.writer.delimiter=\n
simple.writer.prepend.size=false
writer.file.path.type=tablename
writer.destination.type=HDFS
writer.output.format=txt
writer.partitioner.class=gobblin.example.simplejson.TimeBasedJsonWriterPartitioner
writer.partition.level=hourly
writer.partition.pattern=yyyy/MM/dd/HH
writer.partition.columns=time
writer.partition.timezone=Asia/Shanghai
data.publisher.type=gobblin.publisher.TimePartitionedDataPublisher mr.job.max.mappers=1 metrics.reporting.file.enabled=true
metrics.log.dir=/gobblin-kafka/metrics
metrics.reporting.file.suffix=txt bootstrap.with.offset=earliest fs.uri=master:8020
writer.fs.uri=${fs.uri}
state.store.fs.uri=${fs.uri} mr.job.root.dir=/gobblin-kafka/working
state.store.dir=/gobblin-kafka/state-store
task.data.root.dir=/jobs/kafkaetl/gobblin/gobblin-kafka/task-data
data.publisher.final.dir=/gobblintest/job-output

注意标红部分的配置第一行,我这里加了topic过滤,只对topic名称为jsonTest的主题感兴趣

因为需求是需要将gobblin的topic数据按照每天每小时来进行目录分区,具体分区目录需要根据kafka record中的时间字段来

我这里record是json格式的,时间字段格式如{…"time":"2016-10-12 00:30:20"…},因此需要继承Gobblin的TimeBasedWriterPartitioner来重写子类方法按照时间字段对hdfs的目录分区

以下配置需要注意

fs.uri=master:8020

改成自己的集群的hdfs地址

writer.partition.columns=time

这里的time和json中的时间字段保持一致即可

writer.partition.level=hourly

表示hdfs分区到小时

writer.partition.pattern=yyyy/MM/dd/HH

表示最终需要在hdfs分区的目录格式(按照自己的最终分区需求自定义即可)

writer.partitioner.class=gobblin.example.simplejson.TimeBasedJsonWriterPartitioner

重写的hdfs按照json时间字段分区的子类,代码我提交到github了,参考如下链接

https://github.com/cssdongl/gobblin/blob/master/gobblin-example/src/main/java/gobblin/example/simplejson/TimeBasedJsonWriterPartitioner.java

将扩展后的类加入Gobblin相应的模块,我这里是放入gobblin-example模块中去了,重新build,build有问题的话请参考这篇文章

上面配置文件最后的那些路径都是hdfs路径,请确保Gobblin有读写权限

随后启动命令

bin/gobblin-mapreduce.sh --conf $GOBBLIN_JOB_CONFIG_DIR/gobblin-mr.pull

运行成功后,hdfs会出现如下目录,jsonTest是按照对应topic名称生成的,如下图

注意MR模式配置Quartz定时调度我试了好几次不起作用,因此如果需要定时执行抽取的话请利用外部的工具,比如Linux的crontab或者Oozie或者Azkaban都是可以的.

四.Gobblin使用总结

1>先熟悉Gobblin官方wiki,写的很详细

2>github上fork一个源代码仔细阅读下source,extract,partioner这块儿的代码

3>使用中遇到问题多研究Gobblin的log和Hadoop的log.

参考资料:

http://gobblin.readthedocs.io/en/latest/case-studies/Kafka-HDFS-Ingestion/

http://gobblin.readthedocs.io/en/latest/user-guide/Partitioned-Writers/

http://gobblin.readthedocs.io/en/latest/developer-guide/IDE-setup/

http://gobblin.readthedocs.io/en/latest/user-guide/FAQs/

Gobblin采集kafka数据的更多相关文章

  1. MongoDB -> kafka 高性能实时同步(采集)mongodb数据到kafka解决方案

    写这篇博客的目的 让更多的人了解 阿里开源的MongoShake可以很好满足mongodb到kafka高性能高可用实时同步需求(项目地址:https://github.com/alibaba/Mong ...

  2. MongoDB -> kafka 高性能实时同步(sync 采集)mongodb数据到kafka解决方案

    写这篇博客的目的 让更多的人了解 阿里开源的MongoShake可以很好满足mongodb到kafka高性能高可用实时同步需求(项目地址:https://github.com/alibaba/Mong ...

  3. flume采集MongoDB数据到Kafka中

    环境说明 centos7(运行于vbox虚拟机) flume1.9.0(自定义了flume连接mongodb的source插件) jdk1.8 kafka(2.11) zookeeper(3.57) ...

  4. flume实时采集mysql数据到kafka中并输出

    环境说明 centos7(运行于vbox虚拟机) flume1.9.0(flume-ng-sql-source插件版本1.5.3) jdk1.8 kafka(版本忘了后续更新) zookeeper(版 ...

  5. C#+HtmlAgilityPack+XPath带你采集数据(以采集天气数据为例子)

    第一次接触HtmlAgilityPack是在5年前,一些意外,让我从技术部门临时调到销售部门,负责建立一些流程和寻找潜在客户,最后在阿里巴巴找到了很多客户信息,非常全面,刚开始是手动复制到Excel, ...

  6. API例子:用Python驱动Firefox采集网页数据

    1,引言 本文讲解怎样用Python驱动Firefox浏览器写一个简易的网页数据采集器.开源Python即时网络爬虫项目将与Scrapy(基于twisted的异步网络框架)集成,所以本例将使用Scra ...

  7. Performance Monitor采集性能数据

    Performance Monitor采集性能数据 Windows本身为我们提供了很多好用的性能分析工具,大家日常都使用过资源管理器,在里面能即时直观的看到CPU占用率.物理内存使用量等信息.此外新系 ...

  8. java spark-streaming接收TCP/Kafka数据

    本文将展示 1.如何使用spark-streaming接入TCP数据并进行过滤: 2.如何使用spark-streaming接入TCP数据并进行wordcount: 内容如下: 1.使用maven,先 ...

  9. 【Android 应用开发】分析各种Android设备屏幕分辨率与适配 - 使用大量真实安卓设备采集真实数据统计

    .主要是为了总结一下 对这些概念有个直观的认识; . 作者 : 万境绝尘  转载请注明出处 : http://blog.csdn.net/shulianghan/article/details/198 ...

随机推荐

  1. 提取bmp图片的颜色信息,可直接framebuffer显示(c版本与python版本)

    稍微了解了下linux的framebuffer,这是一种很简单的显示接口,直接写入像素信息即可 配置好的内核,会有/dev/fbn 的接口,于是想能否提前生成一个文件,比如logo.fb,里面仅包含像 ...

  2. Hbuilder开发HTML5 APP之向导页制作

    研究了下,向导页的制作还是比较简单的,主要使用的是mui控件中的”图片轮播“组件,组件的标签写法手册中有,中间发现个有趣的东西,如果要作全屏,可以加个样式mui-fullscreen 滑动图片时会自动 ...

  3. 细数iOS上的那些安全防护

    细数iOS上的那些安全防护  龙磊,黑雪,蒸米 @阿里巴巴移动安全 0x00 序 随着苹果对iOS系统多年的研发,iOS上的安全防护机制也是越来越多,越来越复杂.这对于刚接触iOS安全的研究人员来说非 ...

  4. MySQL mysqldump数据导出详解

    介绍 在日常维护工作当中经常会需要对数据进行导出操作,而mysqldump是导出数据过程中使用非常频繁的一个工具:它自带的功能参数非常多,文章中会列举出一些常用的操作,在文章末尾会将所有的参数详细说明 ...

  5. JavaScript面试时候的坑洼沟洄——数据类型

    前些日子写了篇关于最近找工作的一些感受的博客 找工作的一些感悟--前端小菜的成长,没想到得到了很多园友的共鸣,得到了很多鼓励,也有园友希望我分享一些笔试.面试的经验.我觉得分享一些笔试题没太多价值,对 ...

  6. dubbo 配置文件详解

    一.dubbo常用配置 <dubbo:service/> 服务配置,用于暴露一个服务,定义服务的元信息,一个服务可以用多个协议暴露,一个服务也可以注册到多个注册中心. eg.<dub ...

  7. 《Entity Framework 6 Recipes》中文翻译系列 (28) ------ 第五章 加载实体和导航属性之测试实体是否加载与显式加载关联实体

    翻译的初衷以及为什么选择<Entity Framework 6 Recipes>来学习,请看本系列开篇 5-11  测试实体引用或实体集合是否加载 问题 你想测试关联实体或实体集合是否已经 ...

  8. 自定义 checkbox 新玩法 ?

    自定义 checkbox 新玩法 ? 第一步:selector 编写 drawable/selector_checkbox_voice.xml <?xml version="1.0&q ...

  9. Atitit.数据索引 的种类以及原理实现机制 索引常用的存储结构

    Atitit.数据索引 的种类以及原理实现机制 索引常用的存储结构 1. 索引的分类1 1.1. 按照存储结构划分btree,hash,bitmap,fulltext1 1.2. 索引的类型  按查找 ...

  10. iOS开发--应用崩溃日志揭秘(二)

    场景 4: 吃棒棒糖时闪退! 用户邮件说, “当rage master吃棒棒糖时应用就闪退…” 另一用户说, “我让rage master 吃棒棒糖,没几次应用就闪退了!”崩溃日志如下: Incide ...