【UOJ#76】【UR #6】懒癌(动态规划)
【UOJ#76】【UR #6】懒癌(动态规划)
题面
题解
神....神仙题。
先考虑如果是完全图怎么做。。。
因为是完全图,所以是对称的,所以我们只考虑一个有懒癌的人的心路历程。
如果只有一只狗有懒癌:第一天,看了看,似乎其他的狗都没有,但是村子里至少有一只狗有,然后就确定了。
如果有两只狗:第一天,看了看,有一只别的狗有懒癌,不确定;第二天,昨天有懒癌的那只狗还活着,证明他不能确定,所以他还看到了别的狗有懒癌,而除了自己的未知和那个有懒癌的人,别的人的狗都没有懒癌,所以自己的狗有懒癌。
那么递归下去,似乎可以得到如果有\(k\)只狗有懒癌,那么在完全图的情况下就会在第\(k\)天同时开枪。
那么不难发现一切都是在这个人假装自己的狗没有病的前提下,如果他按时听到了枪声,那么他会认为自己的狗没病,否则没有按时听到枪声,他就会认为自己狗病了。那么这个枪声的时间是什么时候呢?显然这个人能够确定的是他所有能够看到的人的狗是否生病,其他的人任意情况都是可能的,那么设\(f[S]\)表示生病状态是开枪时间的最小值,那么这个人会枚举所有的情况,如果在\(max\{f[T]\}\)没有听到枪声,他就会在\(max\{f[T]\}+1\)时刻开枪。这样子直接暴力\(dp\)的复杂度大概是\(O(4^nn)\)左右?
这里打表可以发现当\(U\subset V\)时,\(f[U]\le f[V]\)。这样子就只需要把所有不能确定的全部默认为得了懒癌的,也就是全部看成\(1\)进行转移。
复杂度可以优化到\(O(2^nn)\)。
现在把时间给分开,一种是在有限时间内会开枪的,另外一个种是不会开枪的。考虑一下什么时候不会开枪,也就是一直无法确定的时候,最简单的例子就是只有两个人,他们互相看不见对方,那么永远都不知道时间。考虑构建出补图,即一个人如果看不到另外一个人就连一条边。那么一个不会开枪的情况在补图上表现为一个点数超过\(1\)的强连通分量。这是因为这些人之间的信息无法互相传递,导致信息不完整,所以永远都不会知道。
那么我们可以把这些\(SCC\)给删掉,剩下的部分显然就是一个\(DAG\)。
我们考虑把有懒癌的点给染黑,没有的染白。我们把上面的那个\(dp\)的模型给往这里靠。
这里的过程是:每次可以把一个黑点染白,然后把所有出边染黑。等到所有点都变白了之后,曾经被染黑过的点的个数就是答案。
那么我们回到上面的\(dp\),类比一下这个过程,每次找到一个黑点,一开始默认自己的白的,然后把所有看不到的给变成\(1\),这个过程就是上面的\(dp\)转移。而每次都是在上次的基础上\(+1\)。那么对于每个黑点都要转移出去一次,所以答案和上面的\(DAG\)上的模型一样。
那么我们把题目转化过来了,不难发现这个答案就是黑点点集能够访问到的点的个数。对于第一问考虑答案,显然每个点单独考虑,假设其能够到达这个点的点的个数为\(r\),那么贡献就是\((2^r-1)*2^{n-r}\)。
对于第二问而言,显然只有不存在别的黑点能够到达这个黑点的时候才会被统计,所以答案就是\(2^{n-r}\)。
那么拿\(bitset\)统计就行了。
#include<iostream>
#include<cstdio>
#include<bitset>
using namespace std;
#define MOD 998244353
#define MAX 3030
int n,dg[MAX],bin[MAX],S[MAX],N;
bitset<MAX> a[MAX],g[MAX];
char s[MAX];
int main()
{
scanf("%d",&n);
bin[0]=1;for(int i=1;i<=n;++i)bin[i]=(bin[i-1]*2)%MOD;
for(int i=1;i<=n;++i)
{
scanf("%s",s+1);
for(int j=1;j<=n;++j)
if(i^j)g[i][j]=s[j]=='0',dg[i]+=g[i][j];
}
for(int i=1;i<=n;++i)if(!dg[i])S[++N]=i;
for(int i=1;i<=N;++i)
for(int j=1;j<=n;++j)
if(g[j][S[i]]&&!--dg[j])S[++N]=j;
for(int i=1;i<=N;++i)a[S[i]][S[i]]=1;
for(int i=N;i;--i)
for(int j=1;j<=n;++j)
if(g[S[i]][j])a[j]|=a[S[i]];
int ans1=0,ans2=0,r;
for(int i=1;i<=N;++i)
r=N-a[S[i]].count(),ans1=(ans1+1ll*(bin[N-r]-1)*bin[r])%MOD,ans2=(ans2+bin[r])%MOD;
printf("%d %d\n",ans1,ans2);
return 0;
}
【UOJ#76】【UR #6】懒癌(动态规划)的更多相关文章
- 【UOJ#246】套路(动态规划)
[UOJ#246]套路(动态规划) 题面 UOJ 题解 假如答案的选择的区间长度很小,我们可以做一个暴力\(dp\)计算\(s(l,r)\),即\(s(l,r)=min(s(l+1,r),s(l,r- ...
- UOJ #76 -【UR #6】懒癌(思维题)
UOJ 题面传送门 神仙题. orz czx,czxyyds 首先没有懒癌的狗肯定不会被枪毙,证明显然. 接下来考虑怎样计算一种局面的答案,假设 \(dp_S\) 表示对于有且仅有 \(S\) 中的狗 ...
- UOJ #76 【UR #6】懒癌
确实是一道很不错的题啊. 题目链接 题意 感觉也没什么特别简洁的版本,大家直接看题面吧. 题解 我第一次看到这个类似问题的背景是疯狗,因此下面的题解不自觉的代入了...大家明白意思就好. 我们考虑对于 ...
- UOJ 【UR #5】怎样跑得更快
[UOJ#62]怎样跑得更快 题面 这个题让人有高斯消元的冲动,但肯定是不行的. 这个题算是莫比乌斯反演的一个非常巧妙的应用(不看题解不会做). 套路1: 因为\(b(i)\)能表达成一系列\(x(i ...
- NOIP 2016 换教室 (luogu 1850 & uoj 262) - 概率与期望 - 动态规划
题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有 2n2n 节课程安排在 nn 个时间段上.在第 ii(1 \leq i \leq n1≤ ...
- UOJ #22 UR #1 外星人
LINK:#22. UR #1 外星人 给出n个正整数数 一个初值x x要逐个对这些数字取模 问怎样排列使得最终结果最大 使结果最大的方案数又多少种? n<=1000,x<=5000. 考 ...
- UOJ.52.[UR #4]元旦激光炮(交互 思路)
题目链接 \(Description\) 交互库中有三个排好序的,长度分别为\(n_a,n_b,n_c\)的数组\(a,b,c\).你需要求出所有元素中第\(k\)小的数.你可以调用至多\(100\) ...
- UOJ【UR #12】实验室外的攻防战
题意: 给出一个排列$A$,问是否能够经过以下若干次变换变为排列$B$ 变换:若${A_i> A_i+1}$,可以${swap(A_i,A_i+1)}$ 考虑一个数字从A排列到B排列连出来的路径 ...
- 【UOJ#50】【UR #3】链式反应(分治FFT,动态规划)
[UOJ#50][UR #3]链式反应(分治FFT,动态规划) 题面 UOJ 题解 首先把题目意思捋一捋,大概就是有\(n\)个节点的一棵树,父亲的编号大于儿子. 满足一个点的儿子有\(2+c\)个, ...
随机推荐
- Pycharm新手使用教程(详解)
Pycharm新手使用教程(详解) [注]: 如果想要下载Pycharm工具,直接去<开发工具>中进行下载. 简介 Jetbrains家族和Pycharm版本划分: pycharm是Jet ...
- JavaFx出现错误Caused by: java.lang.NullPointerException: Location is required的解决方法
问题截图: "C:\Program Files\Java\jdk1.8.0_131\bin\java.exe" "-javaagent:I:\IntelliJ IDEA ...
- FCC---Animate Elements Continually Using an Infinite Animation Count---设置animation-iteration-count的次数为无限,让小球一直跳动
The previous challenges covered how to use some of the animation properties and the @keyframes rule. ...
- node设置跨域白名单
// 判断origin是否在域名白名单列表中 function isOriginAllowed(origin, allowedOrigin) { if (_.isArray(allowedOrigin ...
- PHP-RPM 安装指南(亲测有用)
小注:此教程可能有很多弯路,但是最终是肯定安装成功了的,一个问题就是刚开始安装编译的指令版本好像不对,但是后面纠正过来了,但是此教程一共遇到了 十多个问题,也一并解决了,具有一定的借鉴意义,还有( ...
- React Hooks究竟是什么呢?
摘要: React Hooks原理解析. 原文:快速了解 React Hooks 原理 译者:前端小智 我们大部分 React 类组件可以保存状态,而函数组件不能? 并且类组件具有生命周期,而函数组件 ...
- ft6236 触摸屏驱动
在目录下amp\a53_linux\drv\extdrv\touchpad\ft6236下可以看到ft6236.c的文件 1. init函数 static int __init ft_init(voi ...
- 浅谈P/NP问题
克雷数学研究所(Clay Mathematics Institute,CMI)是在1998年由商人兰顿·克雷(Landon T. Clay)和哈佛大学数学家亚瑟·杰夫(Arthur Jaffe)创立, ...
- Div转为Canvas简直不要太好玩~~~
html2canvas库 今天发现了一个神奇的玩意,简直不要太好玩~~ 用canvas做动画是很难,但是div能比canvas简单不少,只是因为canvas中不能操作Dom元素 这款神器,可以直接将D ...
- luoguP3531 [POI2012]LIT-Letters
(https://www.luogu.org/problem/P3531) 注意编号 #include<cstdio> #include<algorithm> #include ...