https://www.luogu.com.cn/problem/P4168

题目

给$n$个数字,有$m$次询问,问$a_l, a_{l+1} , \dots , a_r$的众数是什么,

$1\leqslant n \leqslant 40000, 1\leqslant m \leqslant 50000, 1\leqslant a_i\leqslant10^9$

题解

第一次做分块

方法一

因为n不是很大,所以可以对数据进行离散化后统计出现次数

所以就可以直接统计最大的了。这样复杂度是$\mathcal{O}(m\times n)$,肯定超时

可以尝试提前分块打出一些表,比如分成$t$块,然后提前打好$\binom{t}{2}$块的最大值,并保存是哪一个

那么每次查询的时候最多花$2\times \lfloor n/t\rfloor$的时间,时间复杂度是$\mathcal{O}(t^2n+2mn/t)$

把$m$和$n$看作同数量级,设为N,那么得到$t^2N+2N^2/t$,为了保证数量级相同,设$t^2N=2N^2/t$,得到$t=\sqrt[3]{N}$

因为大于或小于以后两边渐进复杂度都会增加,导致整个表达式的渐进复杂度增加(算法导论:证明$max(a,b)=\Theta(a+b)$)

AC代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<vector>
using namespace std;
#define REP(i,a,b) for(register int i=(a); i<(b); i++)
#define REPE(i,a,b) for(register int i=(a); i<=(b); i++)
#define PERE(i,a,b) for(register int i=(a); i>=(b); i--)
#ifdef sahdsg
#define DBG(...) printf(__VA_ARGS__)
#else
#define DBG(...) void(0)
#endif
typedef long long ll;
#define MAXN 40007
#define MAXM 50007
#define MAXD 35
int a[MAXN], b[MAXN], c[MAXN];
int d[MAXD][MAXD][MAXN];
int now[MAXN];
int t,l,na;
int x=0;
inline void did(int f) {
now[f]++;
if(now[na]<now[f] || (now[na]==now[f] && now[na+1]>f)) {
now[na+1]=f;
now[na]=now[f];
}
}
inline int go(int z, int y) {
int i=(z+l-1)/l, j=y/l;
int L=i*l, R=j*l;
if(i<j) {
REP(k,0,na+2)
now[k] = d[i][j][k];
REP(f,z,L) did(c[f]);
REP(f,R,y) did(c[f]);
} else {
memset(now,0,sizeof now);
REP(f,z,y) did(c[f]);
}
return x=b[now[na+1]];
}
int main() {
int n,m; scanf("%d%d", &n, &m);
REP(i,0,n) {scanf("%d", &a[i]); b[i]=a[i];}
sort(b,b+n); na = unique(b,b+n)-b;
REP(i,0,n) {
c[i] = lower_bound(b,b+na,a[i])-b;
}
memset(d,0,sizeof d);
t = pow((double)n, (double)1/3);
l = t ? n/t : n;
REP(i,0,t) REPE(j,i,t) {
REP(f,i*l,j*l) {
int k = c[f];// DBG("*%d\n", k);
d[i][j][k]++;
if(d[i][j][k]>d[i][j][na] || (d[i][j][k]==d[i][j][na] && k<d[i][j][na+1])) {
d[i][j][na] = d[i][j][k];
d[i][j][na+1] = k;
}
}
} REP(i,0,m) {
int l0, r0;
scanf("%d%d", &l0, &r0);
int l = (l0 + x - 1) % n + 1;
int r = (r0 + x - 1) % n + 1;
if(l>r) swap(l,r);
go(l-1,r);
printf("%d\n", x);
}
return 0;
}

方法二

用同样的分块方法,但是只记录最大值,不记录次数,而使用二分确定大小,一次二分确定大小需要$\mathcal{O}(\log n)$。

设需要分$D$块,然后得到时间复杂度$\mathcal{O}(D\times N+2MN/D\log n)$(因为剩下部分最长是两个块,虽然比平均情况大,但是为了应付数据,数据是最大的很多……)

那么用相同的方法,解得$D=\sqrt{2N\log N}$

中间有个细节,就是计算D和L的时候要考虑是偏大还是篇小,由于我快断电了,所以坑了

AC代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<vector>
#include<cassert>
using namespace std;
#define REP(i,a,b) for(register int i=(a); i<(b); i++)
#define REPE(i,a,b) for(register int i=(a); i<=(b); i++)
#define PERE(i,a,b) for(register int i=(a); i>=(b); i--)
#ifdef sahdsg
#define DBG(...) printf(__VA_ARGS__)
#else
#define DBG(...) void(0)
#endif
typedef long long ll;
#define MAXN 50007
#define MAXM 50007
#define MAXL 1007
#define MAXD 884*2
int a[MAXN],b[MAXN],c[MAXN],nb;
int fk[MAXD][MAXD], L, D;
int cnt[MAXN], nmax, ncnt;
int x=0;
vector<int> arr[MAXN];
int calc(int l, int r, int b) {
//r--;
return lower_bound(arr[b].begin(), arr[b].end(), r)-lower_bound(arr[b].begin(), arr[b].end(), l);
}
void did(int l, int r, int b) {
int t=calc(l,r,b);
if(t>ncnt || (t==ncnt && b<nmax)) {
ncnt=t;
nmax=b;
}
}
void work(int l, int r) {
nmax=0, ncnt=0;
int z=(l+L-1)/L, y=r/L;
if(z<y) {
int Z=z*L, Y=y*L;
REP(i,l,Z) did(l,r,c[i]);
REP(i,Y,r) did(l,r,c[i]);
did(l,r,fk[z][y]);
} else {
REP(i,l,r) did(l,r,c[i]);
}
x=b[nmax];
}
int main() {
int n,m; scanf("%d%d", &n, &m);
REP(i,0,n) {
scanf("%d", &a[i]);
b[i]=a[i];
}
sort(b,b+n);
nb = unique(b,b+n)-b;
REP(i,0,n) {
c[i] = lower_bound(b,b+nb,a[i])-b;
}
D = sqrt(log((double)n)/log(2.0)*n*2); if(D==0) D=1;
L = n/D; //L<L' D>D'
D = n/L; //L>L' D<D'
REP(i,0,D) {
int s=i*L;
nmax = 0, ncnt = 0;
REP(k,0,n) cnt[k]=0;
REP(j,s,n) {
int J=(j+1+L-1)/L, k=c[j];
cnt[k]++;
if(cnt[k]>ncnt ||(cnt[k]==ncnt && k<nmax)) {
ncnt = cnt[k];
nmax = k;
}
fk[i][J]=nmax;
}
}
REP(i,0,n) {
arr[c[i]].push_back(i);
}
REP(i,0,m) {
int l,r;
scanf("%d%d", &l, &r);
l = (l+x-1)%n+1, r=(r+x-1)%n+1;
if(l>r) swap(l,r);
work(l-1,r);
printf("%d\n", x);
}
}

Violet 6 杯省选模拟赛 蒲公英的更多相关文章

  1. Contest Hunter Round #70 - 连续两大交易事件杯省选模拟赛

    orz lydrainbowcat [Problem A]「艦これ市」70万幕后交易事件 排序机器=-=.重要的是相同的处理. 我们可以从小到大添加数字,然后维护一个位置的序列.每一种相等的数字都在一 ...

  2. codehunter 「Adera 6」杯省选模拟赛 网络升级 【树形dp】

    直接抄ppt好了--来自lyd 注意只用对根判断是否哟留下儿子 #include<iostream> #include<cstdio> using namespace std; ...

  3. 【洛谷比赛】[LnOI2019]长脖子鹿省选模拟赛 T1 题解

    今天是[LnOI2019]长脖子鹿省选模拟赛的时间,小编表示考的不怎么样,改了半天也只会改第一题,那也先呈上题解吧. T1:P5248 [LnOI2019SP]快速多项式变换(FPT) 一看这题就很手 ...

  4. @省选模拟赛03/16 - T3@ 超级树

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 一棵 k-超级树(k-SuperTree) 可按如下方法得到:取 ...

  5. 3.28 省选模拟赛 染色 LCT+线段树

    发现和SDOI2017树点涂色差不多 但是当时这道题模拟赛的时候不会写 赛后也没及时订正 所以这场模拟赛的这道题虽然秒想到了LCT和线段树但是最终还是只是打了暴力. 痛定思痛 还是要把这道题给补了. ...

  6. 省选模拟赛第四轮 B——O(n^4)->O(n^3)->O(n^2)

    一 稍微转化一下,就是找所有和原树差距不超过k的不同构树的个数 一个挺trick的想法是: 由于矩阵树定理的行列式的值是把邻接矩阵数值看做边权的图的所有生成树的边权乘积之和 那么如果把不存在于原树中的 ...

  7. NOI2019省选模拟赛 第五场

    爆炸了QAQ 传送门 \(A\) \(Mas\)的童年 这题我怎么感觉好像做过--我记得那个时候还因为没有取\(min\)结果\(100\to 0\)-- 因为是个异或我们肯定得按位考虑贡献了 把\( ...

  8. NOI2019省选模拟赛 第六场

    传送门 又炸了-- \(A\) 唐时月夜 不知道改了什么东西之后就\(A\)掉了\(.jpg\) 首先,题目保证"如果一片子水域曾经被操作过,那么在之后的施法中,这片子水域也一定会被操作&q ...

  9. 省选模拟赛 arg

    1 arg (arg.cpp/in/out, 1s, 512MB)1.1 Description给出一个长度为 m 的序列 A, 请你求出有多少种 1...n 的排列, 满足 A 是它的一个 LIS. ...

随机推荐

  1. 笔记||Python3之函数

    函数:          函数的概念:就是一段代码:一段操作流程. 优点:代码量少.简洁.   维护起来方便 -- 在函数的定义进行修改 函数的定义:1 - def 函数名(): 函数内容 2 - 函 ...

  2. BGA256芯片植球全过程体验(原创)

    今天工具到位,迫不亟待,需要对手上的BGA256的FPGA芯片进行植球, 该芯片买来的时候是有球的,只是在焊接后,由于电路板故障或焊接问题,需要拆下来芯片,导致球损失,需要重新植球. 一般植球都是将所 ...

  3. 基于WCF 的远程数据库服务访问技术

    原文出处:http://www.lw80.cn/shuji/jsjlw/13588Htm.Htm摘要:本文介绍了使用WCF 建立和运行面向服务(SOA)的数据库服务的系统结构和技术要素,分析了WCF ...

  4. zookeeper扫盲

    一.zookeeper概述 a.zookeeper是一个开源的分布式的项目,为分布式业务提供协调服务的apache顶级项目 那什么是分布式的呢,通俗的说就是多个机器可以同时去处理一件事情 b.zook ...

  5. vscode 同步扩展插件

    第一步: 在 VSCode 中,安装用于同步配置的插件 settings sync     第二步:将 VSCode 配置上传到 GitHub 完成这一步需要 GitHub token 和 GitHu ...

  6. wx-icon和progress

    基本内容 index.wxml <!--index.wxml--> <view class="container"> <!--icon text pr ...

  7. 腾讯云推出一站式 DevOps 解决方案 —— CODING DevOps

    在产业互联网的大背景下,如何将人工智能.大数据等前沿技术与实体产业相结合,推动传统企业转型升级,已经成为每一个企业不得不思考的问题.落后的软件研发能力已经拖慢了中国大量企业的数字化转型进程. 为了满足 ...

  8. Python连载56-发送带有附件、正文为HTML的邮件

    一.HTML格式怎么发送右键 1.准备HTML代码作为内容 2.把邮件的subtype设置为html 3.发送 4.举个例子:自己发给自己一个HTML格式的文件 from email.mime.tex ...

  9. 关于Redis 二进制内容的 可视化尝试

    二进制内容的 能否可视化?  网上的资料比较少啊! -------------------------------------------------------------------------- ...

  10. Spring Cloud Finchley.SR1 版本的坑:placeholer占位符无法解析!

    接入nacos 之后,想把所有的配置丢上去. 启动程序是: @EnableDiscoveryClient @RestController @ComponentScan(basePackages = { ...