Sample Input

5 7 2
1 3 0
4 5 1
3 2 0
5 3 1
4 3 0
1 2 1
4 2 1

Sample Output

3 2 0
4 3 0
5 3 1
1 2 1
  这道题当时光读题就读半天,现在大概翻译一下:
    我们需要对于该图建一棵生成树使所有点连通,并且这棵树里有且只有K条白边。
   读明白后就想到了[国家集训队2012]tree(陈立杰),那道题也是类似,要求白边数量恰好为need,但是那道题要求是最小生成树,而这道题只要是生成树就好了。而且还得判断和不合法。然后就开始想,假设我们先扣掉所有白边,那么剩下的就是由黑边组成的一个个联通块了。然后呢?就不知道了,一开始想去用并查集搞,但是没搞出什么名堂,也就放弃了。
  正解的确还是最小生成树,额,或许不应该说是最小生成树,但是的确要用克鲁斯卡尔,我们先把黑边优先,这样,我们就可以先找出造出一个生成树的下限,如果k比他还小那么显然不行。同理,我们再白边优先,找出生成树的上限,如果k比他大那么仍然不行。
  合法性我们解决完了,答案怎么出来呢?
  让我们先回顾树的一个性质:当我们在一棵树上,从一个点向另一个点连边时树就会被破坏,但是,当我们拆开由这两个边组成的环上的任意一点时,树又变得合法。
  首先,对于我们找出白边下限时找出的白边我们都是无法找出黑边将他们替换的,说白了,我们必须选上他们。
  其次,对于剩下的白边,我们可以意识到,我们之所以没有把它们在找下限时把它找到是因为它可以被一个黑边或者白边代替,如果它被白边代替,那么我们仍然不必选他,因为那条白边是一定要选的,当然,我们可以把它和那条白边替换,但既然是spj,这有什么意义呢?
   如果他是被黑边替换,那么我们如果先选他也就不必再去选那条黑边,因此,我们先把必须选白边选上,再贪心去找那些被黑边替换的白边,找够了就只去找黑边,最终输出答案就好了。
 #include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#include <cmath>
#include <map>
#define N 20005
#define M 100005
using namespace std;
int n,m,t,fa[N];
struct ro
{
int to,from,l;
bool bj;
}road[M];
bool px1(ro a,ro b)
{
return a.l>b.l;
}
bool px2(ro a,ro b)
{
return a.l<b.l;
}
int find(int x)
{
if(fa[x]==x)return x;
return fa[x]=find(fa[x]);
}
void hb(int x,int y)
{
int a=find(x),b=find(y);
fa[a]=b;
}
int ans[N];
int main()
{
scanf("%d%d%d",&n,&m,&t);
int sum=;
for(int i=;i<=n;i++)fa[i]=i;
for(int i=;i<=m;i++)
{
scanf("%d%d%d",&road[i].from,&road[i].to,&road[i].l);
if(!road[i].l)sum++;
}
sort(road+,road++m,px1);
int js1=,js2=;
for(int i=;i<=m;i++)
{
int x=road[i].from,y=road[i].to;
if(find(x)!=find(y))
{
js1++;
if(!road[i].l)
{
road[i].bj=;
js2++;
}
hb(x,y);
}
if(js1==n-)break;
}
if(js1!=n-||js2>t)
{
printf("no solution\n");
exit();
}
sort(road+,road++m,px2);
js1=,js2=;
for(int i=;i<=n;i++)fa[i]=i;
for(int i=;i<=sum;i++)
{
if(road[i].bj)
{
int x=road[i].from,y=road[i].to;
hb(x,y);
js2++;
js1++;
ans[js1]=i;
}
}
for(int i=;i<=m;i++)
{
int x=road[i].from,y=road[i].to;
if(find(x)!=find(y))
{
if(!road[i].l)
{
js2++;
}
js1++;
ans[js1]=i;
hb(x,y);
}
if(js2==t)i=sum,js2=-;
}
if(js2!=-)
{
printf("no solution\n");
exit();
}
for(int i=;i<=n-;i++)
{
printf("%d %d %d\n",road[ans[i]].from,road[ans[i]].to,road[ans[i]].l);
}
return ;
}

Bzoj 3624: [Apio2008]免费道路 (贪心+生成树)的更多相关文章

  1. bzoj 3624: [Apio2008]免费道路【生成树+贪心】

    先把水泥路建生成树,然后加鹅卵石路,这里加的鹅卵石路是一定要用的(连接各个联通块),然后初始化并查集,先把必需的鹅卵石路加进去,然后随便加鹅卵石路直到k条,然后加水泥路即可. 注意判断无解 #incl ...

  2. bzoj 3624: [Apio2008]免费道路 生成树的构造

    3624: [Apio2008]免费道路 Time Limit: 2 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 111  Solved: 4 ...

  3. BZOJ 3624: [Apio2008]免费道路

    3624: [Apio2008]免费道路 Time Limit: 2 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1201  Solved:  ...

  4. BZOJ 3624 [Apio2008]免费道路:并查集 + 生成树 + 贪心【恰有k条特殊路径】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3624 题意: 给你一个无向图,n个点,m条边. 有两种边,种类分别用0和1表示. 让你求一 ...

  5. BZOJ 3624: [Apio2008]免费道路 [生成树 并查集]

    题意: 一张图0,1两种边,构造一个恰有k条0边的生成树 优先选择1边构造生成树,看看0边是否小于k 然后保留这些0边,补齐k条,再加1边一定能构成生成树 类似kruskal的证明 #include ...

  6. BZOJ.3624.[APIO2008]免费道路(Kruskal)

    题目链接 我们发现有些白边是必须加的,有些是多余的. 那么我们先把所有黑边加进去,然后把必须要加的白边找出来. 然后Kruskal,把必须要加的白边先加进去,小于K的话再加能加的白边.然后加黑边. 要 ...

  7. 3624: [Apio2008]免费道路

    Description Input Output Sample Input 5 7 2 1 3 0 4 5 1 3 2 0 5 3 1 4 3 0 1 2 1 4 2 1 Sample Output ...

  8. [Apio2008]免费道路[Kruscal]

    3624: [Apio2008]免费道路 Time Limit: 2 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1292  Solved:  ...

  9. P3623 [APIO2008]免费道路

    3624: [Apio2008]免费道路 Time Limit: 2 Sec Memory Limit: 128 MBSec Special Judge Submit: 2143 Solved: 88 ...

随机推荐

  1. 【Ubuntu】查看进程端口占用信息

    1.查看进程信息 ①进程查看 ps -aux ②根据PID查看进程 ps -aux | grep pid ③进程计数,查看指定进程 ps -aux | wc -l ps -aux | grep kwo ...

  2. vs2017 cordova调试android app

    方案是:virtualbox + androidx86 7.0+_x64.iso虚拟机方式

  3. Windows Phone锁屏背景相关代码

    LockScreenManager: 启用应用程序,查看该应用程序是否是当前锁定屏幕背景提供程序,并将自己设置为提供程序. 属性: IsProvidedByCurrentApplication 只读指 ...

  4. mysql 配置 explicit_defaults_for_timestamp

    在之前的配置中,除了目录之外,唯独添加了这一项配置,为什么? 因为mysql中timestamp类型和其他的类型不一样: 在之前先了解一下current timestamp和on update cur ...

  5. PowerDesigner 在通过jdbc连接数据库时 Could not Initialize JavaVM!

    最近用到PowerDesigner的逆向工程,从数据库中逆向生成模型,本想使用odbc连接的,但是需要安装驱动,mysql的还好弄,oracle对我来讲实在是有些麻烦,看到能用jdbc连接,就想试试, ...

  6. 毕设(四)ListBox

    列表框(ListBox)用于提供一组条目(数据项),用户可以用鼠标选择其中一个或者多个条目,但是不能直接编辑列表框的数据.当列表框不能同时显示所有项目时候,他将自动添加滚动条,使用户可以滚动查阅所有选 ...

  7. .NET解析xml字符串,通过反射给实体类对象赋值,获取实体类数据列表

    /// <summary> /// 解析xml字符串 转换为实体类列表数据 /// </summary> /// <param name="xmlStr&quo ...

  8. ML:梯度下降(Gradient Descent)

    现在我们有了假设函数和评价假设准确性的方法,现在我们需要确定假设函数中的参数了,这就是梯度下降(gradient descent)的用武之地. 梯度下降算法 不断重复以下步骤,直到收敛(repeat ...

  9. 深入windows的关机消息截获-从XP到Win7的变化(在XP中程序可以阻止关机,但是在Win7中程序无法阻止关机,可Block的时间从1秒调到了5秒) good

    之前写了一个软件用于实验室的打卡提醒,其中一个重要的功能是在关机之前提醒当天晚上是否已经打卡.之前我是在WM_ENDSESSION中弹出一个模态对话框来提醒,在XP中基本工作正常,在Win7中大多数时 ...

  10. The Portable Executable File Format from Top to Bottom(每个结构体都非常清楚)

    The Portable Executable File Format from Top to Bottom Randy KathMicrosoft Developer Network Technol ...